Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
ответ:Сделайте рисунок к задаче.
Треугольник сильно вытянутый от АС к В. Точка К на стороне ВС близко к С.
Обратите теперь внимание на то, что
∠ В+∠С=∠АКВ.
Проведем из К параллельно АС прямую КЕ.
∠ ВКЕ равен ∠ С ( по свойству параллельных прямых и секущей).
Отсюда ∠ ВКА минус ∠ С= ∠ В.
Получили при АС ᐃ АКС~ᐃ АВС по двум углам
∠АСК=∠ЕКВ и ∠КАС=∠АВС.
В подобных треугольниках соответственные стороны лежат против равных углов.
ВС:АС=АС:КС
АС²=ВС*КС
АС²=18*2
АС=√36=6
Теперь из из этих же подобных треугольников найдем АВ
АВ:АК=ВС:АС
АВ:5=18:6
6АВ=90
АВ=15