где d1 , d2 – диагонали четырёхугольника, а – угол между диагоналями ( 0° < а ≤ 90° ) Диагонали квадрата пересекаются под прямым углом, а у прямоугольника – под острым углом. _____________________________
Площадь квадрата:
Площадь прямоугольника: ______________________________
Сравним площади данных четырёхугольников:
S (k) V S (p)
( 1/2 ) × d² V ( 1/2 ) × d² × sina
1 V sina
“ V ” – знак сравнения ( < , = , > , ≤ , ≥ )
Все значения синуса принадлежат промежутку [ – 1 ; + 1 ] . В нашем случае подходит промежуток ( 0 ; 1 ] Из этого следует, что единица – максимальное значение синуса угла , то есть sin90°. Значит, sinа < 1 Соответственно, площадь прямоугольника будет меньше площади квадрата, что и требовалось доказать.
Если пересечением отрезков с прямой не являются концы отрезков M и D верхний рисунок), То можно рассмотреть ситуацию так:
Прямая а делит плоскость на 2 части. Скажем, верхнюю и нижнюю (правую и левую и т.п.). Точка Х принадлежит одной полуплоскости (любой), тогда концы отрезков M и D, в случае их пересечения прямой а, будут лежать в другой полуплоскости. Если обе точки отрезка лежат в одной полуплоскости, ограниченной прямой, то эту прямую такой отрезок не пересекает.
Если пересечением отрезков [XM] и [XD] с прямой а являются концы этих отрезков M и D (нижний рисунок), то речь о пересечении отрезком [MD] прямой а также не идет, поскольку отрезок [MD] является частью прямой а и имеет с ней более одной общей точки. А при пересечении отрезком прямой точка может быть только одна.
где d1 , d2 – диагонали четырёхугольника,
а – угол между диагоналями ( 0° < а ≤ 90° )
Диагонали квадрата пересекаются под прямым углом, а у прямоугольника – под острым углом.
_____________________________
Площадь квадрата:
Площадь прямоугольника:
______________________________
Сравним площади данных четырёхугольников:
S (k) V S (p)
( 1/2 ) × d² V ( 1/2 ) × d² × sina
1 V sina
“ V ” – знак сравнения ( < , = , > , ≤ , ≥ )
Все значения синуса принадлежат промежутку [ – 1 ; + 1 ] . В нашем случае подходит промежуток ( 0 ; 1 ]
Из этого следует, что единица – максимальное значение синуса угла , то есть sin90°. Значит, sinа < 1
Соответственно, площадь прямоугольника будет меньше площади квадрата, что и требовалось доказать.