Направляющий вектор прямой а перпендикулярен и нормальному вектору плоскости х-2у+z-4=0, и нормальному вектору плоскости 2х+у-z=0. Таким образом, направляющим вектором прямой а является векторное произведение векторов (1;2;1) и (2;1;-1): Векторное произведение векторов a × b = {ay*bz - az*by; az*bx - ax*bz; ax*by - ay*bx} = i ((-2)·(-1) - 1·1) - j (1·(-1) - 1·2) + k (1·1 - (-2)·2) =
= i (2 - 1) - j (-1 - 2) + k (1 + 4) = {1; 3; 5}. Канонические уравнения прямой по точке и направляющему вектору имеет вид:
Таким образом, уравнение прямой проходящей через точку м0( -4,3,0) и параллельной прямой х-2у+z-4=0, 2х+у-z=0 будет таким:
Самый северный мыс Азиатского материка называется мысом Челюскина, самая восточная оконечность Азии - мысом Дежнева, пролив между Новой Землей и полуостровом Таймыр носит имя Бориса Вилькицкого, острова в Карском море названы именами полярных исследователей Шокальского, Сибирякова, Неупокоева, Исаченко, Воронина…
Среди морей, названных именами известных географов Баренца и Беринга, появилось на географических картах море Лаптевых, которого не существовало на старых, дореволюционных картах. Оно было названо в честь замечательных исследователей Арктики Харитона Прокофьевича и Дмитрия Яковлевича Лаптевых, принимавших участие в Великой Северной экспедиции XVIII века. Именем Дмитрия Лаптева назван и пролив, соединяющий море Лаптевых с Восточно-Сибирским морем, а берегом Харитона Лаптева назвали северо-западное побережье Таймырского полуострова - от Пясинского залива до залива Таймырского.
Города и поселки, названные в честь отечественных путешественников:
пос. Беринговский (Чукотка) - В. И. Беринг (мореплаватель, капитан-командор Русского флота) , г. Кропоткин (Краснодарский край) - П. А. Кропоткин (князь, русский географ и геолог) , г. Лазарев (Хабаровский край) - М. П. Лазарев (русский путешественник) , г. Макаров (Сахалинская обл. ) - С. О. Макаров (русский флотоводец, океанограф) , пос. Пояркова (Амурская обл. ) - В. Д. Поярков (русский землепроходец) , пос. Пржевальское (Смоленская обл. ) - Н. М. Пржевальский (русский путешественник) , г. Хабаровск, станция Ерофей Павлович (Амурская обл. ) - Ерофей Павлович Хабаров (русский землепроходец) , г. Шелехов (Шелихов) (Иркутская обл. ) - Г. И. Шелихов - русский путешественник;
именем С. П. Kрашенинниковa названы остров и бухта у юго-восточной оконечности Камчатки, мыс на острове Карагинском и гора около озера Кроноцкого на восточном побережье полуострова Камчатка.
Географические объекты, названные в честь А. И. Чирикова мыс в Анадырском заливе, Россия; мыс в Тауйской губе, Россия; Выбирай сам,какие больше понравятся)
Начерти трапецию АВСД. Верхнее основание АВ, нижнее основание ДС.
Из вершин А и В опусти высоты АЕ и ВМ. Высоты у трапеции равны, АЕ = ВМ.
Тогда ЕМ = АВ = 6см. ДЕ + МС = 27 - 6 = 21(см)
пусть ДЕ = х см, тогда МС = (21 - х)см
В треугольнике АДЕ по теореме Пифагора АЕ^2 = 13^2 - x^2 = 169 - x^2.
в треугольнике ВМС по теореме Пифагора ВМ^2 = 20^2 - (21 - x)^2 = 400 - (21 - x)^2
Т.к.АЕ = ВМ, то получим уравнение:
169 - x^2 = 400 - (21 - x)^2
169 - x^2 = 400 - 441 + 42х - х^2
169 = -41 + 42x
42х = 169 + 41
42х = 210
х = 5
ДЕ = 5см
По теореме Пифагора в треугольнике АДЕ найдем АЕ.
АЕ^2 = 13^2 - 5^2 =169 - 25 = 144, тогда АЕ = корень из 144 = (12)см
Т.е. мы нашли высоту трапеции АЕ.
S = (АВ+ДС)/2 * АЕ
S= (6+27)/2 *12 = 198(кв.см)
ответ: 198 кв.см. УДАЧИ!!