ответ: 1. 21°; 2. 11,5м; 3. 128; 4. 9 и 81°; 5. 36,5 и 53,5°
Объяснение: 1. В прямоугольном треугольнике сумма острых углов равна 90°. ∠Е=69°, значит ∠М=90-69=21°
2. В прямоугольном треугольнике катет, лежащий против ∠30° равен половине гипотенузы: СР=ЕР/2=23/2=11,5м
3. В прямоугольном треугольнике сумма острых углов равна 90° и катет, лежащий против угла 30° равен половине гипотенузы. ∠D=90-60=30°; МD=СМ*2=64*2=128;
4. Для решения этой задачи примем один острый угол за 3 части, а второй за 27 частей. Тогда сумма их равна: 3+27=30частей, а сумма этих углов равна 90°. Узнаем сколько градусов приходится на 1 часть: 90/30=3°. Значит один угол равен 3*3=9°, а второй 3*27=81°;
Для решения этой задачи примем меньший угол за х, тогда больший угол будет равен х+17. Составим уравнение:
х+(х+17)=90; 2х=90-17=73
х=73/2=36,5°;
второй угол=90-36,5=53,5°
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4