Объяснение:
В прямоугольном треугольнике АВС угол С прямой,
катеты равны 15 см и 20 см.
Найдите косинус , синус и тангенс угла В.
Решение.
Косинус (cosB)- отношение прилежащего катета (ВС=20 см) к гипотенузе.
Находим гипотенузу по т. Пифагора
АВ²=АС²+ВС² = 15²+20²=225+400=625;
АВ = √625=25 см. Тогда
cosB = 20/25 = 4/5 = 0.8.
Cинус угла В (sinB) равен отношению противолежащего катета (AC=15 см) к гипотенузе (АВ=25 см)
sinB = 15/25 = 3/5 = 0,6.
Тангенс угла В (tgB) равен отношению противолежащего катета (AC=15 см) к прилежащему (ВС=20 см)
tgB =15/20 = 3/4 = 0.75.
Раз трапеция равнобедренная, то и диагонали равны (ну рассмотрите пару треугольников, образованных РАЗНЫМИ ДИАГОНАЛЯМИ, большим основанием и боковой стороной, из их равенства по 2 сторонам и углу между ними следует и равенство третьих сторон, то етсь диагоналей).
Типовое построение - проводим через вершины малого основания прямую II диагонали, НЕ проходящей через эту вершину, до пересечения с продолжением большого основания. Получается треугольник, РАВНОВЕЛИКИЙ (имеющий ту же площадь) трапеции (у него основание равно сумме оснований трапеции, а высота - общая с трапецией).
Этот треугольник В ДАННОМ СЛУЧАЕ равнобедренный прямоугольный с гипотенузой 64. Поэтому его площадь равна 32*64/2 = 1024
(32 - это высота, она же медиана к гипотенузе, равна половине гипотенузы)
Задача очень упрощается, если на время забыть об условии и просто найти площадь и высоту треугольника к стороне АС = 12. Просто проведем эту высоту ВН = h, и обозначим АН = z; тогда
z^2 + h^2 = 5^2;
(12 - z)^2 + h^2 = 97;
Легко это решить
144 - 24*z + z^2 + h^2 = 97; 144 - 24*z + 25 = 97; z = 3;
Очевидно, что АHВ - "египетский" треугольник, АВ = 5, АH = 3, ВH = h = 4;
Площадь АВС Sabc = 12*4/2 = 24; всё это пригодится.
Теперь заметим, что треугольник BNP подобен ABC. Ясно, что их высоты пропорциональны сторонам. Обозначим NP = PQ = MQ = NM = x; высота АВС h = 4; высота BNP равна 4 - х;получаем
(4 - x)/x = 4/12; x = 3; x^2 = 9 - это площадь квадрата. А отношение площадей квадрата и треугольника АВС равно 9/24 = 3/8;
Те, кто составлял задачу, наверняка предполагали, что решение пойдет в "обратном" порядке, то есть сначала доля площади квадрата от площади АВС будет выражена через x, потом х будет выражен через h, и только потом будет вычислена h. После чего вся эта "английская сказка" будет прочитана в обратном порядке :)) После некоторого размышления я пришел к выводу, что проще сразу начать с конца :))