Центр вписанной окружности лежит на биссектрисе угла. Биссектриса - геом. место точек, равноудаленных от сторон угла. Если окружность касается сторон угла, ее центр удален от сторон угла на радиус, следовательно лежит на биссектрисе угла.
Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.
Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.
Решение: 1) Sполн. = 2πR(R+H), 2) В основании цилиндра лежит круг, поэтому будем использовать формулу для нахождения площади круга: Sосн = Sкр = πR² => 64π = πR² => πR² = 64π => R² = 64, R = √64 = 8 (см), R = BO1 = O1C. 3) Найдём диаметр основания цилиндра: d = BC = 2R = 2×8 = 16 (см). 4) Т.к. ABCD - прямоугольник, то будем использовать формулу для нахождения площади прямоугольника: Sпрям = Sabcd = ab = AB × BC => 96π = AB × BC = AB × 16 => AB × 16 = 96π => AB = 96π/16 = 6π (см), AB = H. 5) Sполн. = 2π×8(8+6π) = 128π+96π² (см²).
Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.
Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.