есть теорема - если диагонали четырехугольника в точке пересечения делятся пополам то это параллелограмм. Док-во - четырехугольник АВСД, АС и ВД диагонали, О-пересечение диагоналей, АО=СО, ВО=ДО, треугольник АОВ=треугольник СОД по двум сторонам (АО=СО, ВО=ДО) и углу между ними (уголАОВ=уголСОД как вертикальные) значит АВ=СД, уголВАО=уголДСО - это внутренние разносторонние углы, если при пересечении двух прямых третьей прямой внутренние разносторонние углы равны то прямые параллельны, АВ параллельна СД, если в четырехугольнике две стороны попарно равны и параллельны то четырехугольник - параллелограмм, АВСД-параллелограмм, также можно доказать что АД=ВС, АД параллельно ВС, АВ+ВС=13,6, периметр АВСД=2*(АВ+ВС)=2*13,6=27,2
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
52 сантиметри
Объяснение:
Нехай довжина однієї зі сторін 4х, тоді сусідньої 9х. Маємо рівняння:
4х*9х=144см2
36х2=144см2
х2=4см2
х=2см
4х=8см
9х=18см
Тоді периметр становитиме Р=2*(18см+8см)=2*26см=52см