В равнобокой трапеции АВСD биссектриса угла А , делит сторону ВС на отрезки ВК и КС . Найдите периметр трапеции, если известно, что АВ=8см и ВК в 2 раза больше чем КС, а верхнее основание меньше нижнего на 6 см.
Объяснение:
ABCD -трапеция , АВ=ВС=8 см . Т.к. АК-биссектриса ⇒∠ВАК=∠DAК и ∠ВАК=∠ВКА как накрест лежащие при ВС||AD, АК-секущая.Поэтому ΔАВК-равнобедренный ( по признаку равнобедренного треугольника) ⇒АВ=ВК=8 (см).
Тогда КС=8/2=4 ( см) , ВС=8+4=12 (см)
Поэтому AD=12+6=18 (см).
Р=2*8+12+18=46 (см)
Обозначим буквами вершины треугольника АВС (начиная с нижней левой вершины), а точку пересечения прямой (показан голубым цветом) со стороной АС за К.
Объяснение:
Сначала мы должны опустить высоту ВН в треугольнике АВС, которая также является высотами треугольников АВК и ВКС.
1) Высота в равнобедренном треугольнике является медианой и биссектрисой
следовательно ->
-> АН=НС=(21+11)÷2=16
2) Рассмотрим треугольник ВНК:
НК=НС-КС=16-11=5
По т. Пифагора:
ВН^2=169-25
ВН=12
3)Можно рассмотреть любой из треугольников АВН и ВНС
По т. Пифагора:
х^2=144+256
х^2=400
х=20
ОТВЕТ: х=20
а) сторона=2*√(6²-(3√2)²)=2√18=6√2=а
б) sinα=3√2/6=√2/2 ⇒ α=45°
в) бок ребро=√(6²+(а/2)²)=√(36+18)=√54=3√6
sinβ=3√2/3√6=1/√3=0.5774 ⇒ β=35°58'
Sбок=0,5*6*а=3*6√2=18√2
г) Sпол=4Sбок+Sоснован=4*18√2+(6√2)²=72√2+72=72(1+√2)=72*2,41=173,5