Скалярное произведение векторов вычисляется по формуле:
Пусть b = 6 - сторона квадрата. Найдём а = ОА - половину диагонали АС. Диагонали разбивают квадрат на 4 одинаковых прямоугольных равнобедренных треугольника, в нашем случае с боковыми сторонами, равные а.
Считаем а по теореме Пифагора:
Теперь находим угол α между векторами. Переместим параллельно вектор ОА, совместив его начало с точкой D. Тогда сразу становится ясно, что угол между векторами ОА и DC равен 135°.
Площадь - 30.
Периметр - 60.
Объяснение:
Площадь ромба- половина произведения его диагоналей. 6*10/2=30.
Периметр ромба- всё стороны росла равны и их четыре: 4*15=60.