кут між площінами альфа і в дорівнює 60°точка А лежить в площіні а знайти відстань від точки А до площіни В якщо відстань трчки А до лінії перетину площін =6 см
Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
Нужен ответ29788
Школы
Это интересно
Репетиторы
Задать вопрос
Войти

Аноним
Геометрия
30 августа 18:11
Диагонали ромба равны 10 и 12 см. Найдите его площадь и периметр.
ответ или решение2

Горшков Александр
Площадь ромба можно определить как половину произведения диагоналей:
S = 0,5 * d1 * d2 = 0,5 * 10 * 12 = 60 см2.
Рассмотрим прямоугольный треугольник, в котором половины диагоналей ромба - катеты, сторона ромба - гипотенуза. По теореме Пифагора:
a2 = (d1 / 2)2 + (d2 / 2)2 = (10 / 2)2 + (12 / 2)2 = 52 + 62 = 25 + 36 = 61;
Сторона ромба равна a = √61 ≈ 7,81 см.
Периметр ромба равен сумме длин его сторон: Р = 4 * а = 4√61 ≈ 31,24 см.