Сначала нужно найти периметр первого триугольника Р1=12+15+21=48 Р2=16 пото находим коефицыент к=Р2/Р1=1/3 итак стораны второго треуголника будут 1/3*12=4 1/3*15=5 1/3*21=7
Трапеция АВСД, АД-диаметр, АО=ОД=радиус, АД=2ВС, АВ=2, трапеция равнобокая - только в равнобокую трапецию можно вписать окружность, АВ=СД, уголА=уголД, проводим высоты ВН и СК на АД, треугольники АВН и КСД равны как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК-прямоугольник ВС=НК=2х, АН=КС=(АД-НК)/2=(2ВС-ВС)/2=0,5ВС=х, НО=ОК=НК/2=2х/2=х, ОД=радиус=ОК+КД=х+х=2х=ОС, треугольник ОСК прямоугольный катет ОК=1/2 гипотенузы ОС, уголОСК=30, уголСОК=90-30=60, СК=ОС*sin60=2х*корень3/2=х/корень3, СД в квадрате=СК в квадрате+КД в квадрате=3*х в квадрате + х в квадрате=4х в квадрате, СД=2х=2 см, х=1, радиус=2*1=2
1) радиус вписанной окружности=сторона*корень3/6=10*корень3/6=5*корень3/3, длина окружности=2пи*радиус=2пи*5*корень3/3=10пи*корень3/3, 2)радиус описанной окружности около правильного многоугольника=сторона/(2*sin(180/n)), где n -количество углов, радиус=12/(2*sin(180/6))=12/(2*(1/2))=12, в шестиугольнике радиус описанной = стороне=12, радиус вписанной окружности в квадрат=сторона/2, 12=сторона/2, сторона=12*2=24, площадь квадрата=24*24=576 3) треугольник АВС, уголА=90, АС=3., АВ=4, ВС = корень (АС в квадрате+АВ в квадрате)=корень(9+16)=5, радиус вписанной окружности=(АС+АВ-АС)/2=(3+4-5)/2=1, длина окружности=2пи*радиус=2пи*1=2пи, площадь круга=пи*радиус в квадрате=пи
Р1=12+15+21=48 Р2=16
пото находим коефицыент
к=Р2/Р1=1/3
итак стораны второго треуголника будут
1/3*12=4
1/3*15=5
1/3*21=7