равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
Объяснение:
1) рассмотрим случай когда BE=5cм ; CE=6см
BC=5+6=11cм
Обозначим ∠BAE=a тогда ∠ЕAD=a так как АЕ - биссектриса и А=2a
сумма углов параллелограмма прилежащих к одной стороне=180°
A+B=180°; B=180°-A=180°-2a
рассмотрим ΔАВЕ
сумма углов треугольника =180°
∠BAE+∠B+∠BEA=180°
∠BEA=180°-∠BAE-∠B=180°-a-(180°-2a)=180°-a-180°+2a=a
∠BEA=a и ∠BAE=a
если в треугольнике два угла равны то он является равнобедренным, а сторона к которой прилежат два равных угла является основанием
⇒ ΔАВЕ-равнобедренный AB=BE=5 см
BC=11cм ; AB=5см
в параллелограмме противоположные стороны равны
тогда периметр Р=2(АВ+BC)=2(5+11)=2*16=32 cм
Р=32 см
2) рассмотрим случай когда BE=6cм ; CE=5см
тогда АВ=BE=6cм
Р=2(АВ+BC)=2(6+11)=2*17=34 cм
Р=34 см