В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Если все прямые лежат в одной плоскости, через них можно провести только одну плоскость. В условии сказано, что плоскости проведены через каждые две из них. Совсем необязательно они должны быть перпендикулярны друг другу. Через две пересекающиеся прямые всегда можно провести одну и только одну плоскость. Или Через любые три точки пространства, не лежащие на одной прямой, можно провести одну и только одну плоскость. Отметим точку пересечения 0, точки на каждой прямой 1, 2, 3 соответственно Проведено три плоскости. См. рисунок.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.