Сума двох сторін трикутника, які утворюють кут величиною 120º, дорівнює 8 см, а довжина третьої сторони -7 см. Знайдіть невідомі сторони трикутника ОЧЕНЬ НАДО
Обозначим катеты а и в, радиус вписанной окружности r. На катетах отрезки от острого угла до точки касания вписанной окружности тоже равны 3 и 7. Тогда катеты равны r+3 и r+7. По Пифагору (r+3)² + (r+7)² = 10². r²+6r+9+r²+14r+49 = 100. 2r²+20r-42 = 0, r²+10r-21 = 0. Квадратное уравнение, решаем относительно r: Ищем дискриминант: D=10^2-4*1*(-21)=100-4*(-21)=100-(-4*21)=100-(-84)=100+84=184;Дискриминант больше 0, уравнение имеет 2 корня: r_1=(√184-10)/(2*1)=√184/2-10/2=√46-5 ≈1,78233;r_2=(-√184-10)/(2*1)=-√184/2-10/2=-√46-5 ≈ -11,78233 этот отрицательный корень отбрасываем. Определяем катеты: а = √46-5+3 = √46-2, в = √46-5+7 = √46+2. Площадь S треугольника равна: S = (1/2)ab = (1/2)*(√46-2)*(√46+2) = (1/2)*(46-4) = 42/2 = 21 кв.ед.
Обозначим катеты а и в, радиус вписанной окружности r. На катетах отрезки от острого угла до точки касания вписанной окружности тоже равны 3 и 7. Тогда катеты равны r+3 и r+7. По Пифагору (r+3)² + (r+7)² = 10². r²+6r+9+r²+14r+49 = 100. 2r²+20r-42 = 0, r²+10r-21 = 0. Квадратное уравнение, решаем относительно r: Ищем дискриминант: D=10^2-4*1*(-21)=100-4*(-21)=100-(-4*21)=100-(-84)=100+84=184;Дискриминант больше 0, уравнение имеет 2 корня: r_1=(√184-10)/(2*1)=√184/2-10/2=√46-5 ≈1,78233;r_2=(-√184-10)/(2*1)=-√184/2-10/2=-√46-5 ≈ -11,78233 этот отрицательный корень отбрасываем. Определяем катеты: а = √46-5+3 = √46-2, в = √46-5+7 = √46+2. Площадь S треугольника равна: S = (1/2)ab = (1/2)*(√46-2)*(√46+2) = (1/2)*(46-4) = 42/2 = 21 кв.ед.
3 см, 5 см, 7 см.
Объяснение:
Нехай одна сторона х см, тоді друга 8-х см, третя 7 см.
За теоремою косинусів
7²=х²+(8-х)²-2*х*(8-х)*cos120
49=х²+64-16х+х²-16х+2х²*(-1/2)
49=х²-8х+64
х²-8х+15=0
За теоремою Вієта х=5 і х=3.
Одна сторона 5 см, друга 3 см, третя 7 см.