М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
biyubiyu
biyubiyu
26.12.2022 14:07 •  Геометрия

Какими инструментами пользуются для измерения расстояний

👇
Ответ:
ник4898
ник4898
26.12.2022
0Так и хочется спросить, а каких расстояний? Не поверите, сейчас научились измерять расстояния до звезд. Для этого используют специальные приборы, о которых в школе и не знают. Но вот как измерили расстояние до  Луны, то есть примерно 384000 километров скажу. Два 9-классника московской школы взяли 10-метровую рулетку и измерили... Не верите? И правильно делаете. Если бы они измеряли хотя бы 100 км в день, им понадобилось бы больше 10 лет. Не говоря о прочих прелестях безвоздушного пространства. А как? Наш космический корабль доставил на поверхность Луны специальный отражатель, который отражает назад падающий на него луч. Потом наши физики нацелили на него луч лазера и засекли время, за которое луч пролетит туда и обратно. Потом разделили на скорость света, примерно 300000 километров в секунду. Не родился еще снайпер, который мог бы сделать то, что они сделали - попали за 384000 километров в отражатель размером меньше метра.
Глубины вод измерялись раньше лотом, то есть веревкой с привязанным грузом.   Сейчас измеряют используя отраженный звуковой или ультразвуковой сигнал. Скорость известна, время измеряется, глубина вычисляется. Для измерения небольших (метров, сантиметров, миллиметров) расстояний используются рулетки, метры, аршины, линейки, в общем приборы со шкалой, градуированной в единицах длины. Сейчас все чаще используются лазерные дальномеры, работающие на принципе измерения расстояния до Луны. Правда эти приборы сразу показывают расстояние. Строители до сих пор активно  используют разные теодолиты. Масштабные измерения земной поверхности уже давно проводят с аэрофотосъемок или съемок из космоса.  Маленькие размеры (меньше миллиметра измеряют с разного рода микрометров. Совсем маленькие, межатомные, вычисляются используя сложные технологии, но тоже измеряются.
Вообще, измерение расстояний - одно из базовых измерений, на которых покоится познание мира и приборы для этого все время улучшаются, придумывают  новые.
4,8(25 оценок)
Открыть все ответы
Ответ:
опернг
опернг
26.12.2022
1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2)  Окружность называется описанной вокруг треугольника, когда все его вершины  лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3)  Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. 
Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне. 
4,7(62 оценок)
Ответ:
иринка2807
иринка2807
26.12.2022

1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°

Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:

\alpha=\frac{180(n-2)}{n}

Найдем при каком n угол будет равен 160°:

160=\frac{180(n-2)}{n}\\160n=180n-360\\20n=360\\n=18

Т.е. угол в 160° будет у правильного 18-угольника

2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:

R=\frac{a}{\sqrt{3}}

Подставим заданное значение стороны:

R=\frac{6\sqrt{3}}{\sqrt{3}}=6

Следовательно, радиус окружности, описанной около этого треугольника равен 6 см

3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:

\frac{8}{15}*360=192°

а радианная:

=\frac{8}{15}*2\pi=\frac{16\pi}{15}

Длину дуги найдем как 8/15 от длины окружности:

l=\frac{8}{15}*2\pi*R=\frac{8}{15}*2\pi*6=6.4\pi\approx20,1 см

4,4(77 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ