М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ksyushay02
ksyushay02
05.03.2020 12:19 •  Геометрия

Вокружности с центром в точке о проведена хорда ав.центральный угол аов равен 105 градусам.через точки а и в проведены касательные к окружности, пересекающиеся в точке р.найдите градусную меру угла арв.

👇
Ответ:
darunaivastcyk123
darunaivastcyk123
05.03.2020
1. угол OAD = угол ОВD = 90 градусов - т.к. ОА и ОВ - радиусы, проведенные к касательным
2. Сумма углов в четырехугольнике равна 360 градусов. Значит в четырехугольнике ВОАD:
угол В + угол О + угол А + угол D = 360
90 + 105 + 90 + угол D = 360
угол D = 360 - 285
угол D = 75 градусов
ответ: 75 градусов
4,8(98 оценок)
Открыть все ответы
Ответ:
ворона1111
ворона1111
05.03.2020

Пусть P - произвольная точка

PK, PL, PM - перпендикуляры к сторонам треугольника ABC

 

По теореме Пифагора для треугольников PAK и PBK

PK^2 =PA^2 -AK^2 =PB^2 -BK^2 <=> PA^2 -PB^2 =AK^2 -BK^2

(Доказали, что разность квадратов наклонных равна разности квадратов их проекций.)

PB^2 -PC^2 =BL^2 -CL^2

PC^2 -PA^2 =CM^2 -AM^2

Сложим:

AK^2 -BK^2 +BL^2 -CL^2 +CM^2 -AM^2 =0 <=>

AK^2 +BL^2 +CM^2 =CL^2 +BK^2 +AM^2

Если перпендикуляры к сторонам пересекаются в одной точке, то выполняется это равенство.

(Обратное док-во: разность квадратов наклонных для двух пересекающихся перпендикуляров подставляем в доказанное равенство - получаем разность квадратов наклонных для третьего отрезка - тогда он также является перпендикуляром.)

 

Проверим данные из условия

AK=BK=6, BL=AM=1

CM= {9, 11}

CL= {7, 9}

CM^2 =CL^2 в одном случае:

точка M на стороне, точка L на продолжении стороны.


В треугольнике ABC AB=12, AC=10, BC=8. Точки K, L и M лежат на прямых AB, BC и CA соответственно так
4,4(6 оценок)
Ответ:
mulin2000462345
mulin2000462345
05.03.2020

Дана точка A(2; 0,25) и прямая, проходящая через эту точку и пересекающаяся с положительными полуосями в  точках B и С.

Найти уравнение прямой, для которой отрезок ВС будет минимальным.

Эта задача имеет 2 решения:

- 1) миниминизация длины отрезка ВС с применением теоремы Пифагора для треугольника с катетами ОВ и ОС,

- 2) те же действия с использованием критического угла наклона отрезка к оси Оу при его минимальной длине.

1) Пусть ордината точки В равна "b", а абсцисса точки С равна "а".

Из подобия треугольников и координат точки А имеем:

b/0,25 = a/(a - 2), отсюда получаем соотношение для "b":

b = 0,25a/(a - 2).

Получаем функцию зависимости длины L отрезка ВС от одного из параметров:

L = √(a² + b²) = √(a² + (0,25a/(a - 2))²).

Для определения минимума функции нужно найти производную этой функции и приравнять нулю.

dL/da = (a(a³ - 6a² + 12a - 8,125))/((a - 2)³*√(0,0625/(a - 2)²) + 1)*a²)).

Приравниваем нулю числитель, решением кубического уравнения есть величина а = 2,5.

Тогда b = 0,25*2,5/(2,5 - 2) = 1,25.

Получаем минимальную длину ВС = √(1,25² + 2,5²) = √7,8125.

Поучаем: L = 2,795084972.

2) Для этого варианта есть готовая разработка решения.

Минимальная длина находится сразу по формуле:

L = (a^(2/3) + b^(2/3))^(3/2).

Подставив в формулу a = 2 и b = 0,25, получаем результат:

2 2 0,25  

1,107148718 0,894427191 0,447213595  

63,43494882 2,236067977 0,559016994 = 2,795084972.

По полученным a и b находим уравнение прямой.

у = -(b/a)x + b = -(1,25/2,5) x+ 1,25 = -0,5x + 1,25.

Решение аналогичной задачи, в которой выведена данная формула приведено во вложении.


Через точку A(2;0.25) проводятся прямые, пересекающие положительные полуоси в точках B и С. Найти ур
4,7(78 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ