Длина окружности плоскости=10пи=2пи*радиус плоскости , радиус плоскости=10пи/2пи=5, АВ-диаметр плоскости=2*5=10, О-центр сферы, ОА=ОВ=радиус сферы=13, треугольник АОВ равнобедренный, проводим высоту ОН на АВ=медиане, АН=ВН=1/2АВ=10/2=5, треугольник АОН прямоугольный, ОН=расстояние от центра до плоскости=корень(ОА в квадрате-АН а квадрате)=корень(169-25)=12
Пусть a и b - меньшая и большая соответственно сторона второго треугольника. Исходя их того, что треугольники подобны, то суммы меньшей и большей стороны первого треугольника и меньшей и большей стороны второго треугольника будут относиться как коэффициент подобия. (3 + 8)/(a + b) = k Но по условию a + b = 22, поэтому 11/22 = k k = 1/2. Значит, сходственные стороны первого треугольника относятся к сходственные сторонам второго как 1:2. Тогда стороны второго треугольника равны: 2•3 см = 6 см 2•6 см = 12 см 2•8 см = 16 см.
8.1 Площадь равнобедренной трапеции равна: S=(a+b)/2*h, где a и b - основания трапеции (11 и 27) h - высота Отсюда, высота равна: h=S:(a+b)/2=2S:(a+b)=2*285:(11+27)=225:38=15 Т.е. BE (см. рисунок 1) = 15 AE=FD=(27-11):2=16:2=8 По теореме Пифагора: AB²=BE²+AE²=15²+8²=225+64=289 AB=√289=17 Боковая сторона трапеции равна 17. Т.к. трапеция равнобедренная, то боковые стороны равны: AB=CD=17 Периметр — это сумма боковых сторон и оснований, который равен: Р=11+27+17+17=72 ответ: периметр равен 72.
8.2. Найти высоту правильного треугольника, если радиус описанной около него окружности, равен 10 см.
R=10
т.к. ΔАВС - равносторонний, следовательно ∠А=∠В=∠С=60°
R=a/2sin60=a/√3
тогда a=R√3=10√3
h=√3/2*a=√3*a/2=√3*10√3/2=√9*10/2=3*10/2=15 ответ: высота правильного треугольника равна 15
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках Mи Nсоответственно. Найдите BN, если MN=13, AC=65, NC=28. Пусть х - длина ВN. Тогда, ВС=х+32 Составим и решим пропорцию: MN:AC=BN:BC 17/51=х/(х+32) (умножим на 51, чтобы избавиться от дроби) 17=51х/(х+32) 17*(x+32)=51x 17x+544=51x 17x-51x=-544 -34x=-544 34x=544 x=16 ответ: BN=16