Величина одного острого угла прямоугольного треугольника равна 30 градусов, а длина наибольшего катета равна 5√3 см. найдите площадь круга, ограниченного описанной около данного треугольника окружностью.
Центр окружности. описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы. Следовательно. радиус такого круга равен половине длины гипотенузы. Один острый угол равен 30°, второй 90°-30°=60° Бо'льший катет лежит против бо'льшего угла. Тогда гипотенуза равна 5√ 3*sin(60°=10 см R=10:2=5 см S=πR²=25 см²
Пусть дана трапеция АВСД. Сделаем рисунок. Из вершины С проведем параллельно диагонали ВД прямую до пересечения с продолжением основания АД. Точку пересечения обозначим К. Рассмотрим треугольник АСК. Его основание АК равно сумме оснований трапеции, т.к. ВСКД - параллелограмм ( ВС параллельно АД по условию, ВК параллельно диагонали ВД по построению) ⇒ ДК=ВС.Средняя линия - это полусумма оснований. Сумма оснований АК=7,5*2=15 см Площадь трапеции равна половине произведения ее высоты на сумму оснований. Площадь треугольника АСК равна половине произведения высоты на АК, т.е. на сумму оснований трапеции. Высота треугольника равна высоте трапеции. Следовательно, его площадь равна площади трапеции. Но площадь треугольника можно найти и по формуле Герона, где р - полупериметр, а а,b и с - стороны треугольника АСК S=√{p (p−a) (p−b) (p−c)} Не буду приводить вычисления, их несложно сделать самостоятельно. Площадь трапеции АВСД равна площади треугольника АСК и равна 84 см²
Хорошо! Для решения данной задачи, мы можем использовать несколько методов. Я предлагаю рассмотреть два способа решения - с использованием формулы для площади трапеции и с использованием формулы для площади треугольника.
1. Решение с использованием формулы для площади трапеции:
Для начала, нам необходимо найти высоту трапеции. Высота трапеции - это расстояние между основаниями, перпендикулярное им. Для этого можно воспользоваться теоремой Пифагора.
Мы знаем, что сторона AD равна 10 см, а сторона BC равна 8 см. Воспользуемся теоремой Пифагора:
AB^2 + BC^2 = AC^2
AB^2 + 8^2 = 10^2
AB^2 + 64 = 100
AB^2 = 100 - 64
AB^2 = 36
AB = √36
AB = 6 см
Теперь у нас есть высота трапеции AB, поэтому можем воспользоваться формулой для площади трапеции:
S = ((a + b) * h) / 2
где a и b - длины параллельных оснований, h - высота трапеции.
В нашем случае a = AD = 10 см, b = BC = 8 см, h = AB = 6 см:
S = ((10 + 8) * 6) / 2
S = (18 * 6) / 2
S = 108 / 2
S = 54 квадратных см
Ответ: площадь трапеции равна 54 квадратных см.
2. Решение с использованием формулы для площади треугольника:
Заметим, что треугольник ACD - это прямоугольный треугольник с гипотенузой AC. Мы знаем длины катетов AD и DC (они равны 10 см и 8 см соответственно), а также площадь треугольника ACD (она равна 30 квадратных см).
Теперь мы можем воспользоваться формулой для площади треугольника:
S = (a * b) / 2
где a и b - длины катетов прямоугольного треугольника.
В нашем случае a = AD = 10 см, b = DC = 8 см:
S = (10 * 8) / 2
S = 80 / 2
S = 40 квадратных см
Теперь нам нужно найти площадь трапеции. Трапеция состоит из двух треугольников ACD и BCD, поэтому мы можем сложить их площади:
S(trapezoid) = S(ACD) + S(BCD)
S(trapezoid) = 30 + 40
S(trapezoid) = 70 квадратных см
Ответ: площадь трапеции равна 70 квадратных см.
Я надеюсь, что мое объяснение было подробным и понятным для тебя. Если у тебя есть еще какие-либо вопросы, пожалуйста, не стесняйся задавать их!
Один острый угол равен 30°, второй 90°-30°=60°
Бо'льший катет лежит против бо'льшего угла.
Тогда гипотенуза равна
5√ 3*sin(60°=10 см
R=10:2=5 см
S=πR²=25 см²