Рассмотрим треугольник АВС. Точки Р и Н - середины двух его сторон, значит, РН - средняя линия треугольника. Следовательно, PH II АС, PH=1/2 АС. Рассмотрим треугольник АМС. Здесь точки К и Е - середины двух его сторон, значит, КЕ - средняя линия треугольника, и KE II AC, KE = 1/2 AC. Т.е. мы имеем, что PH II АС и KE II AC, значит, PH II КЕ. Также PH=1/2 АС и KE = 1/2 AC, значит РН=КЕ. Пользуемся одним из признаков параллелограмма: если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм. РКЕН - параллелограмм.
Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
Площадь треугольника, вписанного в окружность, равна S = (a b c) / (4 R) также площадь равна S = 1/2 c h. Следовательно, (a b c) / (4 R) = 1/2 c h Так как треугольник равнобедренный, a = b = 5, R = 5; c - основание тр-ка.Сократим уравнение на величину "с" и подставим значения:(5*5) / (4*5) = 1/2 * h5/4 = 1/2 hh = 5/2 – высота треугольникаПо теореме Пифагора половина основания равна:1/2 с = √52 - (5/2)2 = √75/4 = √3*25/4 = 5/2 √3,Полное основание равно 2 * 5/2 √3 = 5√3Площадь треугольника будет равна:S = 1/2 * 5√3 * 5/2 = 25/4 √3
PH II АС, PH=1/2 АС.
Рассмотрим треугольник АМС. Здесь точки К и Е - середины двух его сторон, значит, КЕ - средняя линия треугольника, и
KE II AC, KE = 1/2 AC.
Т.е. мы имеем, что PH II АС и KE II AC, значит, PH II КЕ.
Также PH=1/2 АС и KE = 1/2 AC, значит РН=КЕ.
Пользуемся одним из признаков параллелограмма: если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм. РКЕН - параллелограмм.