AB=6cм, ВС=10 см, BH=8 cм AB=CD=6 см, BC=AD=10 см (протвоположные стороны параллелограмма равны)
если точка H лежит на стороне AD, K на CD (рисунок) Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону S=AD*BK=CD*BH Отсюда BH=AD*BK/CD BH=10*8/6=40/3 см=13 1/3 cм
если точка K лежит на стороне AD, H на CD (рисунок аналогичный только точки Н и К поменять местами) Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону S=AD*BH=CD*BK Отсюда BH=CD*BK/AD BH=6*8/10=4.8 см
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
AB=CD=6 см, BC=AD=10 см (протвоположные стороны параллелограмма равны)
если точка H лежит на стороне AD, K на CD (рисунок)
Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону
S=AD*BK=CD*BH
Отсюда BH=AD*BK/CD
BH=10*8/6=40/3 см=13 1/3 cм
если точка K лежит на стороне AD, H на CD (рисунок аналогичный только точки Н и К поменять местами)
Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону
S=AD*BH=CD*BK
Отсюда BH=CD*BK/AD
BH=6*8/10=4.8 см