а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
ответ:
медиана треугольника - это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
биссектриса треугольника - это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой пресечения биссектрисы с противоположной стороной .
высота треугольника - это перпендикуляр, опущенный из вершины треугольника на противоположную сторону или ее продолжение.
поэтому верными будут утверждения:
2) cd - медиана δавс, т.к. точка d - середина стороны ав ( на рисунке указано, что аd = bd = 9).
6) ек - высота трегольника dec, т.к. ∠к = 90° (указано на рисунке), т.е. ек - перпендикуляр.
ответ: верны утверждения 2) и 6).