Искомое уравнение прямой - это по сути уравнение прямой по направляющему вектору и точке на прямой. В уравнении, вида: (x - x1)/a = (y-y1)/b = (z - z1)/c Коэффициенты а, b, с - это координаты направляющего вектора, а числа x1, y1, z1 - это координаты точки, через которую проходит прямая. В данной задаче направляющий вектор является нормальным вектором к заданной прямой: s(2, -1, 3) Таким образом, мы знаем координаты вектора, перпендикулярного искомой прямой (перпендикуляра) . Теперь вспомним еще один вид уравнения прямой: Ax + By + Cz + D = 0 В этом уравнении коэффициенты A, B, C -это координаты нормального вектора, т. е. вектора перпендикулярного этой прямой. Но ведь мы уже знаем координаты перпендикулярного вектора! ! То есть, мы знаем почти все уравнение: 2x - y + 3z + D = 0 Однако надо найти коэффициент D. А это сделать очень просто: дело в том, что точка А (2,3,1) по условию лежит на данной прямой. Так что если подставить её координаты в уравнение прямой, уравнение обратится в тождество. Подставим: 2*2 - 3 + 3 + D = 0 4 + D = 0 D= -4 ответ: искомое уравнение перпендикуляра: 2х - у + 3z - 4 = 0
Если в прямоугольном треугольнике один из острых углов 45°, второй тоже 45°, и тогда его катеты равны. Гипотенуза равна катету, деленному на синус острого угла= =6√2 Объем призмы равен произведению площади ее основания на высоту. V=S•h Площадь прямоугольного треугольника в основании S=а•b:2 S=6•6:2=18 см² h=V:S h=108:18=6 см Площадь боковой поверхности прямой призмы равна сумме площадей ее боковых граней ( прямоугольников) или произведению высоты на периметр основания, что дает одинаковый результат. S бок=h•P=6•(6+6+6√2)=6•6(2+√2)=36•(2+√2)см²