Средняя линия трапеции равна полусумме оснований,следовательно сумма оснований равна 24. А периметр любой фигуры - это сумма длин всех сторон. Следовательно,чтобы найти боковую сторону нужно вычесть из периметра сумму оснований и поделить данную цифру на 2,так как по условию у нас равнобедренная трапеция,что значит,что боковые стороны равны: 38-24= 14/2 = 7 см ответ: 7 см
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Поместим начало координат в вершину прямого угла, а оси направим по его сторонам. Пусть конец отрезка, который движется по оси ОХ, имеет координаты (t,0). Тогда, если длина отрезка равна L, то второй конец, который движется по оси ОY, будет иметь координаты . Тогда абсцисса середины отрезка x=t/2, а ордината середины . Отсюда t=2x. Подставляем это в y и получаем, что x и y связаны соотношением . Т.е. середина отрезка описывает дугу окружности с центром в вершине прямого угла, и радиусом в половину длины отрезка.
38-24= 14/2 = 7 см
ответ: 7 см