В квадрате диагонали перпендикулярны друг другу. Если есть точка М(х₁ у₁) и прямая Ах + Ву + С = 0, то уравнение перпендикулярной прямой: А(у - у₁) - В(х - х₁) = 0. Подставляем известные данные: точка А(5;-4) и прямая - диагональ ВД: х - 7у - 8 = 0. Уравнение диагонали АС: 1*(у - (-4)) - (-7)*(х - 5) = 0. у + 4 + 7х - 35 = 0, АС: 7х + у - 31 = 0. Эта же прямая в виду уравнения с коэффициентом: у = -7х + 31.
В уравнении типа у = кх + в коэффициент к - это тангенс угла наклона прямой к оси "х". Стороны квадрата проходят под углом +45° и -45° к диагонали. Используем формулу тангенса суммы (разности) углов: . Используя к = -7 для АС, находим "к" для сторон АВ и АД:
Теперь переходим к уравнениям сторон. У параллельных прямых коэффициент к одинаков. Найдём координаты точки С, симметричной точка А относительно прямой ВД. Алгоритм решения : 1) Находим прямую (диагональ АС), которая перпендикулярна прямой ВД. 2) Находим точку К пересечения прямых - это будет центр квадрата. 3) Точка К является серединой отрезка АС. Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим точку С.
1) Уравнение АС найдено. 2) ВД: х - 7у - 8 = 0 -7х + 49у + 56 = 0 АС: 7х + у - 31 = 0 7х + у - 31 = 0 -------------------------- 50у + 25 = 0 у = -25 / 50 = -1/2. х = 7у + 8 = 7*(-1/2) + 8 = -3,5 + 8 = 4,5. Получили координаты точки К(4,5; -0,5).
Пусть АВС - равнобедренный треугольник и АВ=ВС. В равнобедренном треугольнике боковые стороны равны. Значит АВ=ВС=20 см (8+12). Биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам (свойство биссектрисы). Тогда АС/АВ=12/8, отсюда АС=20*12/8=30 см. Зная три стороны, по формулам радиуса вписанной окружности найдем этот радиус. 1. Радиус равен: r=√[(p-a)(p-b)(p-c)/p], где a,b,c - стороны треугольника, р - полупериметр. В нашем случае р=(20+20+30)/2=35см r=√(15*15*5/35) =15/√7 или 15√7/7 см. 2. Для равнобедренного треугольника r=(b/2)*√[(2a-b)/(2a+b)], где а - боковая сторона, b - основание. Тогда r=15√(10/70)=15/√7=15√7/7 см. ответ: r=15√7/7 см.
Вектор ОА имеет координаты (-1; 3). Его модуль: |OA|= кор(1+9) = кор10
Проекция на ось Х:
(кор10)*cosa = -1
cosa = -1/(кор10)
а = 180 - arccos(1/(кор10)) градусов (примерно 108,5 град)