R=4см
Sосн=16π см²
Sбок.=16π√2см²
Sпол.=16π+16π√2 см²
Объяснение:
∆SBA- равнобедренный <SBA=<SAB=45°
∆SOA- прямоугольный, равнобедренный.
<SOA=<ASO=45°.
SO=OA=R=4 см
Sосн=πR²=π*4²=16π см² площадь основания конуса.
∆SOA- прямоугольный.
SA- гипотенуза
SO и ОА - катеты.
По теореме Пифагора найдем
SA²=SO²+OA²=4²+4²=16+16=32
SA=√32=4√2 см апофема
l=SA=4√2 см
Sбок=πRl, где l- апофема.
Sбок=π*4*4√2=16π√2 см² площадь боковой поверхности конуса.
Sсеч=SO*BA/2=SO*2*OA/2=SO*OA=4*4= =16 см² площадь осевого сечения.
Sпол=Sосн+Sбок=16π+16π√2 см² площадь полной поверхности конуса.
ответ: х=6, у=6
Объяснение: Треугольники ОАА ₁ОВВ₁₁ , ОСС₁₁подобны по двум углам? ∠О-общий, ∠ОА₁А= ∠ОВ₁В= ∠ОС₁С как соответственные углы при параллельных АА1 || ВВ1 || СС1 и секущей ОС. 1) Тогда соответственные стороны этих треугольников пропорциональны ОА/ОА₁= ОВ/ОВ₁=ОС/ОС₁ ⇒ 4/2 =(4+х)/(2+3) ⇒ (4+х)/5=2 ⇒ 4+х=10 ⇒х=6. 2) Тогда сторона ОС= 4+6+12=22, ОС₁- 2+3+у= 5+у 4) ОС/ОС₁= ОА/ОА₁ ⇒ 22/(5+у)=2 ⇒ 5+у=11, ⇒у=6