Плоскость ABC=ABCD. Проекция CB1D1 на ABCD,не что иное как треугольник CBD . Тогда если b-угол между плоскостями ABC и CB1D1,то cos(b)=S(CBD)/S(CB1D1) S-площадь. Пусть сторона куба равна a,тогда величина диагонали равна :a*√2 (Из теоремы Пифагора). Очевидно,что треугольник :CB1D1-равносторонний,со стороной a*√2. А треугольник CBD-прямоугольно-равнобедренный ,с величиной катета a. S(CB1D1)=( (a*√2)^2 *√3) )/4 = = ( a^2*√3)/2 S(CBD)=a^2/2. Откуда : cos(b)=(a^2/2)/ ( (a^2*√3)/2)= =1/√3=√3/3. b=arccos(√3/3). P.S кто то очень умный,скажет что этот угол можно точно посчитать,а вот и нет,это можно было бы посчитать,только для тангенса.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Диагонали ромба делят углы пополам, пересекаются под прямым углом и в точке пересечения делятся пополам. В результате пересечения диагоналей образуются прямоугольные треугольники с гипотенузой равной стороне ромба и катетами равными половине диагоналей. В нашем случае гипотенуза - 19, а один из острых углов - 30°. В прямоугольном треугольнике против угла 30° лежит катет в два раза меньший гипотенузы. Угол 30° - меньший из углов треугольника. Против меньшего угла лежит меньшая сторона. Таким образом меньшая диагональ равна 19/2*2=19 ед. И самый простой Второй угол ромба - 180-60=120°. Диагональ делит его на равносторонний треугольник. Меньшая диагональ равна 19 ед.