А- I 1 . Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. А- I 2 . Через любые две точки можно провести прямую, и только одну.
Основные свойства взаимного расположения точек на прямой и на плоскости.
А- II 1 Из трех точек на прямой одна и только одна лежит между двумя другими. А- II 2 . Прямая разбивает плоскость на две полуплоскости.
Основные свойства измерения отрезков и углов.
А- III 1 . Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумые длин частей, на которые он разбивается любой его точкой. А- III 2 . Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
Основные свойства откладывания отрезков и углов.
А- IV 1 . На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один. А- IV 2 . От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.
Существование треугольника, равного данному.
А- IV 3 . Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно дан-ной полупрямой.
Основное свойство параллельных прямых.
А- V 1 . Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.
Основные свойства плоскостей в пространстве.
C 1 . Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей. С 2 . Если две различные плоскости имеют общую точку, то они пересекаются по прямой. С 3 . Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.
Центр вписанной в треугольник окружности находится в точке пересечении биссектрис треугольника. Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника. Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой. Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1, а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам, радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты, а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника. Радиус вписанной в данный треугольник окружности равен 3:3= 1см. Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см. ----------------------------------- Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.
Центр вписанной в треугольник окружности находится в точке пересечении биссектрис треугольника. Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника. Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой. Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1, а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам, радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты, а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника. Радиус вписанной в данный треугольник окружности равен 3:3= 1см. Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см. ----------------------------------- Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.
А- I 1 . Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
А- I 2 . Через любые две точки можно провести прямую, и только одну.
Основные свойства взаимного расположения точек на прямой и на плоскости.
А- II 1 Из трех точек на прямой одна и только одна лежит между двумя другими.
А- II 2 . Прямая разбивает плоскость на две полуплоскости.
Основные свойства измерения отрезков и углов.
А- III 1 . Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумые длин частей, на которые он разбивается любой его точкой.
А- III 2 . Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
Основные свойства откладывания отрезков и углов.
А- IV 1 . На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины, и только один.
А- IV 2 . От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.
Существование треугольника, равного данному.
А- IV 3 . Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно дан-ной полупрямой.
Основное свойство параллельных прямых.
А- V 1 . Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.
Основные свойства плоскостей в пространстве.
C 1 . Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.
С 2 . Если две различные плоскости имеют общую точку, то они пересекаются по прямой.
С 3 . Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.