Ну, тут дано, что BC=AC, т.е боковые стороны, значит этот треугольник - равнобедренный, но это особой роли не сыграет, т.к CF -медиана, значит FA = FB, а AB = AF+FB = 100+100 = 200 мм, или 20 см. остальные стороны есть, вычислим периметр: P= 2*150+200= 500 мм, или 50см.
Продлим боковые стороны трапеции до пересечения в точке М. Сумма углов при основании треугольника АМВ равна 90°, следовательно, угол АМD равен 180°-90°=90° Рассмотрим треугольники АМD и BМC. Так как ВС|| АD, соответственные углы при их пересечении секущими АМ и DМ равны. Рассматриваемые треугольники подобны по трем углам. Отсюда АМ:BМ=AD:BC (10+BМ):BМ=18:6 6*(10+ВМ)=18 ВМ 60+6 ВМ=18 ВМ 12 ВМ=60 ВМ=5 Из С проведем СО параллельно АВ. В четырехугольнике АВСО противоположные стороны параллельны, ⇒АВСО= параллелограмм, и АО=ВС=6 см, СО=АВ=10 см Из вершины В проведем прямую ВК параллельно СD до пересечения с АD. ВМ=ТС=5 ( т.к. ВМСТ- прямоугольник из параллельности его сторон и равенства углов) ⇒ Т - середина ОС, который равен АВ, угол ВСТ=углу ТОК как накрестлежащие. Вертикальные углы при Т - равны. Следовательно, ⊿ ВТС=⊿ ОТК по двум углам, прилежащим к равной стороне. ⇒ ОК=ВС=6 АО=ОК=6 см Угол АВК вписанный и прямой, опирается на АК ⇒ диаметр, О - его середина. ⇒ R= АО=6 см --------- Но так и напрашивается другое решение, при котором величина АВ как будто бы является лишней. Если мы проведем ВК параллельно МD. то угол АВК - прямой, опирается на АК , и потому АК - диаметр. Поскольку DК=ВС=6, то АК=18-6=12, и тогда R=12:2=6 см)
Рассмотрим треугольник ABD. BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°. ∠ABO=∠DBO (т.к. BE - биссектриса). Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников). Следовательно, AB=BD. Т.е. треугольник ABD - равнобедренный. BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника). Следовательно, AO=OD=AD/2=104/2=52. Проведем отрезок ED и рассмотрим треугольник BEC. ED - медиана этого треугольника, так как делит сторону BC пополам. Площади треугольников EDC и EDB равны (по второму свойству медианы). S EDC= S EDB=(BE*OD)/2=(104*52)/2=52*52=2704 S ABE=(BE*AO)/2=(104*52)/2=2704 Т.е. S ABE=S EDC=S EDB=2704 Тогда, S ABС=3*2704=8112 AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы). S ABD=(AD*BO)/2=S ABC/2 (104*BO)/2=8112/2 BO=8112/104=78 Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора: AB^2=BO^2+AO^2 AB^2=78^2+52^2 AB^2=6084+2704=8788 AB=√8788=√169*52=√169*13*4=2*13*√13=26√13 BC=2AB=2*26√13=52√13 Рассмотрим треугольник AOE. OE=BE-BO=104-78=26 Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора: AE^2=AO^2+OE^2 AE^2=52^2+26^2=2704+676=3380 AE=√3380=√20*169=√169*5*4=13*2√5=26√5 Так как BE - биссектриса, то используя ее первое свойство запишем: BC/AB=CE/AE 52√13/26√13=CE/(26√5) 2=CE/(26√5) CE=52√5 AC=AE+CE=26√5+52√5=78√5 ответ: AB=26√13, BC=52√13, AC=78√5 как то так. рисунок внизу.
остальные стороны есть, вычислим периметр: P= 2*150+200= 500 мм, или 50см.