ВМ=КД по условию задачи. ВС=СД как стороны прямоугольника. угол АВМ равен углу СДК как накрестлежащие при пересечении параллельных прямых секущей. Эти треугольника равны по двум сторонам и углу между ними. ------------ Получившийся четырехугольник - параллелограмм. Четырехугольник АМСК составлен из двух треугольников. Они равны, т.к. углы при М и К равны как дополняющие до 180 градусов углы ВМА и СКD, стороны АМ=СК равны в равных треугольниках, а МК - общая сторона. Углы при М и К накрестлежащие при пересечении АМ и СК секущей, следовательно, АМ || СК, и параллельность и равенство противоположных сторон четырехугольника - признак параллелограмма. Четырехугольник АМСК будет ромбом, если исходный прямоугольник - квадрат.
В треугольнике ABC DN - средняя линия по определению. Значит, по свойству средней линии ND параллельна AB.Отсюда следует параллельность ND и KB,так как KB = 1/2 AB. Имеем также, что ND = 1/2*AB = 1/2*10 = 5 (см). Так как по условию задачи точка K - середина отрезка AB, то KB = 1/2*10 = 5 (см). Аналогично рассуждая,доказываем, что КD - средняя линия треугольника ABC,что KD параллельна NB, что KD = 1/2*BC = 5 (см) и что BN = 5 см. Рассмотрим четырехугольник KBND. В нём ND параллельна KB и KD параллельна BN (по ранее доказанному). Также мы имеем, что NB = KD = 5 см и что KB = DN = 5 см. Значит, по определению данный четырехугольник - параллелограмм. А следуя из того, что NB = KD = KB = DN = 5 см, то получаем, что KBND - ромб. Найдем периметр данной фигуры. P = 5*4 = 20 (см). ответ: ромб; 20 см
ВС=СД как стороны прямоугольника.
угол АВМ равен углу СДК как накрестлежащие при пересечении параллельных прямых секущей.
Эти треугольника равны по двум сторонам и углу между ними.
------------
Получившийся четырехугольник - параллелограмм.
Четырехугольник АМСК составлен из двух треугольников.
Они равны, т.к. углы при М и К равны как дополняющие до 180 градусов углы ВМА и СКD, стороны АМ=СК равны в равных треугольниках, а МК - общая сторона.
Углы при М и К накрестлежащие при пересечении АМ и СК секущей, следовательно, АМ || СК, и параллельность и равенство противоположных сторон четырехугольника - признак параллелограмма.
Четырехугольник АМСК будет ромбом, если исходный прямоугольник - квадрат.