.(Решить ! в новом студенческом общежитии 20 трёххкомнатных квартир,40 двухместных и 4 однокомнатные. сколько студентов в общажитии, если у каждого из них отдельная комната?).
На картине мы видим семью, которая встречает мальчика, пришедшего из школы с двойкой. Мальчик-двоечник выглядит обычным оболтусом, его одежда — расстёгнутое, мятое пальто, брюки, чёрные ботинки — выглядит небрежно. В правой руке он держит перевязанный портфель, который служил мячом и санками своему хозяину, с торчащими коньками. Светлые помятые волосы, оттопыренные красные уши, румяные от свежего воздуха и игры щёки не вяжутся с подчёркнуто огорчённым лицом. Он вздыхает, всем своим видом изображая «неподдельное» переживание из-за оценки. Мальчика радостно встречает собака. В стороне присела, оставив работу, мать. Увидев его с грустным и раскрасневшимся от мороза лицом, она поняла, что ребёнок вдоволь наигрался на улице и на самом деле не переживает о том, что получил двойку. Мать расстроенная и уставшая от того, что сын ленивый и слабохарактерный. Женщина не знает, как повлиять на двоечника, у неё опускаются руки. Рядом с мамой младший брат на велосипеде, который смеётся над старшим, прекрасно понимая смысл происходящего и подшучивает, ехидничая над ним. За обеденным столом готовит уроки старшая сестра. Она встала, с укором глядя на брата-разгильдяя. Поза, поворот головы, взгляд — всё свидетельствует о том, что она не одобряет поведение двоечника. Её фигура четко выделена тёмным силуэтом в светлом дверном проёме. Окно позади неё создает двойное освещение фигуры и символизирует светлое будущее девочки. Разительный контраст представляет собой вымученная, преувеличивающая значение условной школьной оценки, реакция людей и искренняя радость животного.
Как я понимаю, нельзя просто преобразовать выражения и показать их равенства, а надо долго и пространно рассуждать. Итак, пусть х ∈ A\B (это кстати просто разность множеств, не симметрическая). Тогда из свойств операций над множествами верно, что х ∈ А ∩ -B (буду обозначать отрицание минусом). Теперь посмотрим на правую часть. Пусть х ∈ А\(А∩В), отсюда опять же верно, что х ∈ А ∩ х ∈ -(А∩В), или же по закону де Моргана х ∈ А ∩ х ∈ -А∪-В, или же х ∈ А ∩ (х ∈ -А ∪ х ∈ -В), или же по принципу дистрибутивности (х ∈ А ∩ х ∈ -А) ∪ (х ∈ А ∩ х ∈ -В), и отсюда наконец по принципу дополнения х ∈ ∅ ∪ х ∈ А ∩ -В, и по свойству нуля х ∈ А ∩ -В. Как мы видим, левая часть в этом смысле идентична правой. То есть в принципе уже равенство верно. Наверное, предполагается, что сначала надо из левой части вывести правую, а потом наоборот. Тут надо будет просто продолжить этот ряд операций в другую сторону, если действительно надо. 2) Метод, конечно, какая-то жесть в смысле записи, поэтому я просто преобразую левую часть в правую и потом наоборот как логические выражения без упоминания ссылок на конкретные свойства. A\(B\C)=(A\B)\/(A/\C) Работаем с левой частью: A\(B\C) = А ∩ -(В\С) = А ∩ -(В∩-С) = А ∩ (-В ∪ С) = (А ∩ -В) ∪ (А ∩ С) = (А\В) ∪ (А ∩ С) - вывели правую. Из правой левую - повторяем всю цепочку действий, но наоборот.
20*3=60 чел в трёххкомнатных,
40*2=80 чел в двухместных,
4*1=4 чел в однокомнатных,
60+80+4=144 чел в общежитии