Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:
а + b + с = 15 [1]
По свойству арифметической прогрессии:
b - а = с - b
2b = а + с подставим в уравнение [1], получим:
2b + b = 15
3b = 15
b = 5 - второй член арифметической прогрессии.
Тогда сумма первого и третьего членов:
а + с = 15 - 5
а + с = 10 ⇒ c = 10 - a
Переходим к геометрической прогрессии. По условию:
первый член = а + 1
второй член = b + 3 = 5 + 3 = 8
третий член = с + 9 = 10 - a + 9 = 19 - a
По свойству геометрической прогрессии:
не удовл.условию, так как искомая геометрическая прогрессия возрастающая.
Получили а = 3, тогда с = 10 - а = 10 - 3 = 7
Итак, первые три члена арифметической прогрессии: 3; 5; 7.
Найдем три первых члена геометрической прогрессии:
первый член = а + 1 = 3 + 1 = 4
второй член = 8
третий член = с + 9 = 7 + 9 = 16
Искомая геометрическая прогрессия: 4; 8; 16; ...
Найдем сумму 7 первых членов.
b₁ = 4 - первый член
q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии
Искомая сумма:
ответ: 508
наименьшее значение функции на отрезке [-3; 0] равно 2
Пошаговое объяснение:
найдем критические точки функции и посмотрим на условие непрерывности функции
для этого найдем производную
функция существует и непрерывна везде и в том числе на отрезке [-3; 0], значит по теореме Вейерштрасса, на отрезке функция имеет точки экстремума.
найдем критические точки функции
6x² - 6x -36 =0
6(x²- x -6) = 6(x-3)(x+2)
точки х = 2, х = -3
точка х=2 не принадлежит нашему отрезку, она нас не интересует
найдем значения функции в критической т х= -3 и на конце отрезка х=0
f(0) = 2
f(-3) = 29
наименьшее значение функции на отрезке [-3; 0] равно 2