Имеем неопределённость оо - оо (бесконечность минус бесконечность). Умножим и разделим исходное выражение на sqrt(x^2+1)+sqrt(x^2-1). Получим такое выражение: [sqrt(x^2+1) - sqrt(x^2-1)]*[sqrt(x^2+1) + sqrt(x^2-1)]/[sqrt(x^2+1) + sqrt(x^2-1)] В числителе имеем разложение разности квадратов на множители, знаменатель так и оставляем: [(sqrt(x^2+1))^2 - (sqrt(x^2-1))^2]/[sqrt(x^2+1) + sqrt(x^2-1)] В числителе производим упрощения: (sqrt(x^2+1))^2 - (sqrt(x^2-1))^2= x^2 + 1 -x^2 +1 = 2 Знаменатель вновь без изменений. После этого исходное выражение выглядит так: 2/(sqrt(x^2+1) + sqrt(x^2-1)) Вот теперь можно вместо икса подставлять бесконечность. В знаменателе получится оо + оо = оо. Сумма бесконечностей равна бесконечности. А вот разница может оказаться любой. Наконец, нам осталось разделить 2 на оо, а это будет нуль. ответ: lim = 0
1) Набираем в 4л ведро 4л воды и переливаем воду в 7л ведро; 2) повторяем , только доливаем 7л ведро да полного, у нас остаётся 1л воды в 4л ведре; 3) выливаем всю воду из 7л ведра и в пустое 7л ведро выливаем 1л воды из 4л ведра; 4) набираем полное 4л ведро и выливаем в 7л ведро , где у нас налит 1л воды . Получаем 5л воды в 7л ведре.
Смотри решение на фото