Извини но можно фотку страницы где это задание тогда мы попробуем решить.
а) Можно. Для этого удобно брать палочки, идущие подряд. Возьмем первые 5 палочек:
.
Построим треугольник ABC:
. Заметим, что
, поэтому можно не рассматривать неравенства треугольника, включающие эту сторону. Осталось доказать, что
. Действительно
по формуле суммы геометрической прогрессии. Но
. Проверим истинность этого неравенства:
.
б) Предположим, что можно. Тогда, в частности, можно составить два одинаковых отрезка. Рассмотрим набор степеней числа
, которые формируют первый отрезок. Пусть это числа
, для второго отрезка возьмем степени
. Получим
(*). Теперь становится ясно, почему это не может быть верно. Ведь то, что мы видим, похоже на запись числа в системе счисления, пусть и "необычной". Но двух различных записей одного числа не бывает. Однако трудно говорить об этом, имея дробную систему счисления. Пусть
, другими словами, степени расставлены по порядку. Умножим уравнение на
, получим только целые числа вида
. Пусть
. Выберем такое число
, что
. Тогда число
записано в системе счисления 190, поскольку, как легко видеть,
. Отсюда и следует наше противоречие.
Впрочем, кажется, что это перебор, и можно было решить проще: в (*) вычеркнем равные члены с обеих сторон. Получим, что сумма разных степеней равна другой сумме разных степеней. Теперь в левой части к большим степеням перекинем с правой стороны меньшие, а для правой части наоборот. Значит, отрицательное число равно положительному. Противоречие.
Однако для тренировки, мне представляется, было полезно рассмотреть оба подхода.
Пошаговое объяснение:
1)уравнение плоскости Q, проходящей через точки
А (–6; –4; 2);
В (5; –2; –1);
С (5; 6; –4);
для составления уравнения плоскости используем формулу
![\left[\begin{array}{ccc}x-z_A&y-y_A&z-z_A\\x_B-x_A&y_B-y_A&z_B-z_A\\x_C-x_A&y_C-y_A&z_C-z_A\end{array}\right] =0](/tpl/images/1627/6356/c8719.png)
![\left[\begin{array}{ccc}x-(-6)&y-(-4)&z-2\\5-(-5)&(-2)-(-4)&-1-2\\5-(-6)&6-(-4)&-4-2\end{array}\right] =0](/tpl/images/1627/6356/67f4b.png)
(x -(-6))(2*(-6) - (-3)*10) - (y -(-4))(11*(-6) -(-3)*11 ) + (z -2)(11*10 -2*11) = 0
18(x -(-6)) + 33(y - (-4)) + 88(z - 2) = 0
и вот мы получаем уравнение плоскости Q
Q : 18x + 33y + 88z +64 = 0
2) канонические уравнения прямой АВ. А(–6; –4; 2); В(5; –2; –1);
формула канонического уравнения прямой

наша формула прямой

3) уравнение плоскости G, проходящей через точку D(2; 8; 6) перпендикулярно прямой АВ
будем искать прямую в виде 
здесь А, В, С - координаты направляющего вектора.
поскольку G ⊥ АВ, то нормаль АВ будет направляющим вектором для G ⇒ s = n = (11, 2, -3)
и вот формула
G : 11y + 2y - 3z -20 =0
4) расстояние от точки D(2; 8; 6) до плоскости Q : 18x + 33y + 88z +64=0
для расчета нам потребуется
А = 18; В = 33; С = 88; D = 64;

