Чтобы сравнивать дроби, их нужно привести к общему знаменателю. Из двух правильных дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.
2/6 и 4/7 = 14/42 и 24/42 Общий знаменатель 42 42 : 6 = 7 - доп.множ. к 2/6 = (2*7)/(6*7) = 14/42 42 : 7 = 6 - доп.множ. к 4/7 = (4*6)/(7*6) = 24/42 2/6 < 4/7, так как 14/42 < 24/42
3/7 и 4/5 = 15/35 и 28/35 Общий знаменатель 35 35 : 7 = 5 - доп.множ. к 3/7 = (3*5)/(7*5) = 15/35 35 : 5 = 7 - доп.множ. к 4/5 = (4*7)/(5*7) = 28/35 3/7 < 4/5, так как 15/35 < 28/35
2/15 и 3/20 = 8/60 и 9/60 Общий знаменатель 60 60 : 15 = 4 - доп.множ. к 2/15 = (2*4)/(15*4) = 8/60 60 : 20 = 3 - доп.множ. к 3/20 = (3*3)/(20*3) = 9/60 2/15 < 3/20, так как 8/60 < 9/60
1.угол ОМК=ОКМ, т.к треугольник ОМК-равнобедренный(ОК=ОМ=радиус) ОК перпендикулярен касательной по определению, значит угол между ними 90 град. тогда угол ОКМ=90-84=6град следовательно, угол ОМК=ОКМ=6град.
2.рассмотрим дополнительный треугольник ОАВ, где О-центр окр. Треугольник ОАВравностороннийи тогда угол ОВА=САВ=75 град по условию Сумма углов треугольника должна быть равна 180 град, следовательно, угол АОВ=180-75-75=30град. АОВ+ВОС=180град, из них АОВ=30, следовательно, ВОС=180-30=150град. Треугольник СОВ тоже равнобедренный и его углы ОСВ=ОВС отсюда каждый из них=(180-150)/2=15град т.е угол С=15град
4.уголОАВ=15, но ОВА=ОАВ(треугольник равнобедренный, значит, углы равны) ОВА=15град. СВО=56-15=41град ВСО=СВО=41град
8.равнобедренные треугольники СОД и АОД центрально симметричны поэтому ОСД=ОДС=ОАВ=ОВА=25 град