24,57: 3,5+(3,35-2¹³/₁₅+⁵/₈)×(225: 12,5-3¹⁴/₁₉×2) = 85³²/₅₇
1) 24,57: 3,5 = 7,02
2) 3,35-2¹³/₁₅ =³³⁵/₁₀₀-⁴³/₁₅ =³³⁵ˣ³/₃₀₀-⁴³ˣ²⁰/₃₀₀=¹⁰⁰⁵/₃₀₀-⁸⁶⁰/₃₀₀=¹⁰⁰⁵⁻⁸⁶⁰/₃₀₀=¹⁴⁵/₃₀₀ = ²⁹/₆₀
3) ²⁹/₆₀+⁵/₈=²⁹ˣ⁴/₂₄₀+⁵ˣ³⁰/₂₄₀=¹¹⁶/₂₄₀+¹⁵⁰/₂₄₀=¹¹⁶⁺¹⁵⁰/₂₄₀ = ²⁶⁶/₂₄₀= ¹³³/₁₂₀
4) 7,02+¹³³/₁₂₀ = ⁷⁰²/₁₀₀+¹³³/₁₂₀ = ⁷⁰²ˣ⁶/₆₀₀+¹³³ˣ⁵/₆₀₀ = ⁴²¹²/₆₀₀+⁶⁶⁵/₆₀₀ = ⁴²¹²⁺⁶⁶⁵/₆₀₀ = ⁴⁸⁷⁷/₆₀₀ - перед знаком "умножить"
5) 225: 12,5= 18
6) 3¹⁴/₁₉×2 =⁷¹/₁₉ײ/₁ = ⁷¹ˣ²/₁₉ = ¹⁴²/₁₉ = 7⁹/₁₉
7) 18 - 7⁹/₁₉ = 17¹⁹/₁₉ - 7⁹/₁₉ = 10¹⁰/₁₉ = ²⁰⁰/₁₉
8) ⁴⁸⁷⁷/₆₀₀× ²⁰⁰/₁₉ = ⁴⁸⁷⁷ˣ²⁰⁰/₆₀₀ₓ₁₉ = ⁴⁸⁷⁷/₃ₓ₁₉ = ⁴⁸⁷⁷/₅₇ = 85³²/₅₇
дано:
ромб авсе,
ан — высота,
вн = нс,
ав = 6 сантиметров,
найти площадь ромба s авсе — ?
решение:
1) рассмотрим прямоугольный треугольник авн.сторона вн = нс = 1/2 * 6 = 6/2 = 3 (сантиметра). по теореме пифагора (квадрат гипотенузы равен сумме квадратов катетов):
ан^2 + вн^2 = ав^2 (выразим из данного равенства катет ан^2);
ан^2 = ав^2 - вн^2;
ан^2 = 6^2 - 3^2;
ан^2 = 36 - 9;
ан^2 = 27;
ан = √27;
ан = 3√3;
2) рассмотрим ромб авсе.
s авсе = ан * вс;
s авсе = 3√3 * 6;
s авсе = 18√3 сантиметров квадратных.
ответ: 18√3 сантиметров квадратных.
1 30+40=70
2 76-70=6
3 6:2=3
4 3+40=43
5
3+30=33