Основные формулы для решения задачи: V по теч. = Vc + V теч. - скорость по течению реки V против теч. = Vc - V теч. - скорость против течения t по теч.= S/V по теч. - время на путь по течению реки t против теч. = S/V против теч. - время на путь против течения реки По условию: Скорость теплохода в неподвижной воде -это собственная скорость теплохода (Vc) . Путь в одну сторону S = 285 км Время на путь туда-обратно t = 36 - 19 = 17 часов. Пусть скорость течения Vc = х км/ч Путь по течению: Скорость Vпо теч. = (34 + х ) км/ч Время в пути t₁= 285/(34+x) ч. Путь против течения: Скорость V против теч. = (34 - х) км/ч Время в пути t₂ = 285/(34-x) ч. Время на путь туда-обратно : t₁ +t₂ = 17 ч. Уравнение. 285/(34+х) + 285/(34-х) = 17 |×(34+x)(34-x) знаменатели ≠ 0 ⇒ х≠ 34 ; х≠ = -34 285(34-x) + 285(34+x) = 17(34+x)(34-x) 9690 - 285x + 9690 + 285x= 17(34² - x² ) 19380 = 17(1156 -x²) |÷17 1140= 1156 - x² x²= 1156-1140 x² = 16 x₁ = - 4 не удовлетворяет условию задачи х₂ = 4 (км/ч) Vтеч. ответ: 4 км/ч скорость течения реки.
1)sin250=sin(360-90)=-sin90=-1 2)это формула двойного тангенса получается просто нужно найти тангенс 60 это табличное значение корень из 3 3)sin=4/5 cos=-3/5 там по основному тригонометрическому тождеству находишь косинус так как угол 2 четверти то по окружности смотришь косинус угла второй четверти всегда отрицательный поэтому -3/5 ctg a/2 = 1+cos/sin ctg a/2= 1+(-3/5)/4/5=2/5/4/5=1/2 sin(a+b)=sin a*cos b+ cos a sin b sin(a-b)=sin a* cos b- cos a*sin b sin a*cos b+ cos a sin b-sin b+ cos a/sin a* cos b- cos a*sin b+sin b*cos a там все вроде сократится
V по теч. = Vc + V теч. - скорость по течению реки
V против теч. = Vc - V теч. - скорость против течения
t по теч.= S/V по теч. - время на путь по течению реки
t против теч. = S/V против теч. - время на путь против течения реки
По условию:
Скорость теплохода в неподвижной воде -это собственная скорость теплохода (Vc) .
Путь в одну сторону S = 285 км
Время на путь туда-обратно t = 36 - 19 = 17 часов.
Пусть скорость течения Vc = х км/ч
Путь по течению:
Скорость Vпо теч. = (34 + х ) км/ч
Время в пути t₁= 285/(34+x) ч.
Путь против течения:
Скорость V против теч. = (34 - х) км/ч
Время в пути t₂ = 285/(34-x) ч.
Время на путь туда-обратно : t₁ +t₂ = 17 ч.
Уравнение.
285/(34+х) + 285/(34-х) = 17 |×(34+x)(34-x)
знаменатели ≠ 0 ⇒ х≠ 34 ; х≠ = -34
285(34-x) + 285(34+x) = 17(34+x)(34-x)
9690 - 285x + 9690 + 285x= 17(34² - x² )
19380 = 17(1156 -x²) |÷17
1140= 1156 - x²
x²= 1156-1140
x² = 16
x₁ = - 4 не удовлетворяет условию задачи
х₂ = 4 (км/ч) Vтеч.
ответ: 4 км/ч скорость течения реки.