М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ked00p08uz1
ked00p08uz1
19.10.2022 21:24 •  Алгебра

за решение.
Как можно заранее​

👇
Открыть все ответы
Ответ:

1. -2;

2. 3.

Объяснение:

1.Sn=6n-n^2

a1 = S1 = 6•1 - 1^2 = 5;

a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;

a2 = S2 - S1 = 8 - 5 = 3.

Найдём d:

d = a2 - a3 = 3 - 5 = -2.

2. Sn=6n-n^2

Рассмотрим квадратичную функцию

у = 6х - х^2.

Графиком функции является парабола

у = - х^2 + 6х

Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:

х вершины = -b/(2a) = -6/(-2) = 3.

y вершины = - 3^2 +6•3 = -9+18 = 9.

Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.

Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.

Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.

ответить на второй вопрос можно и по-прежнему другому:

Sn=6n-n^2

- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.

Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.

В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.

4,5(79 оценок)
Ответ:
skillvip
skillvip
19.10.2022
\left \{ {{2x \leq 6} \atop { x^{2} +7x+60}} \right.
\left \{ {{x \leq 3} \atop {(x+6)(x+1)0}} \right.
Решим второе неравенство
_____-6_________-1_______
     +           -               +
(-\infty;-6)  и   (-1;+\infty)
Найдем пересечение решений
ответ: (-\infty;-6)    и    (-1;3]
2.
x_{1}=-2
x_{2} =-1
( я нашла корни по теореме Виета)
_____-2______-1________
+            -               +
ответ: (-\infty;-2)          и   (-1;+\infty)
\frac{ x^{2} -2x-8}{16- x^{2} } \geq 0
\frac{ x^{2} -2x-8}{ x^{2} -16} \leq 0
\left \{ {{ (x^{2}-2x-8)( x^{2} -16) \leq 0 } \atop { x^{2} -16 \neq 0}} \right.
Решим первое неравенство, найдем корни, приравняв нулю.
x_{1} =4
x_{2}=-2
x_{3}=-4
Разложим на множители 1 неравенство
(x+2)(x-4)(x-4)(x+4) \leq 0
(x+2)(x+4)( x-4)^{2} \leq 0
Отметим точки на числовой прямой, причем -2-закрашенная, а 4 и - 4 выколотые( исключены вторым неравенством)
______-4______-2_____4________
    +           -          +         +
Знаки ставятся справа налево начиная с +. Тк (х-4)^2, то на следующем промежутке знак не поменяется, далее чередуются -, +
ООФ (-4;-2] 
4,6(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ