Моторний човен рухався річкою з власною швидкістю 10 км/год.Таким чином він проплив 18 км за течією та 14 км проти течії, витративши 3 год.15 хв.Знайти швидкість течії річки, щоб визначити час,що знадобиться для наступного запливу.
Пусть х км/ч - скорость течения реки, тогда (10 + х) км/ч - скорость лодки по течению реки, (10 - х) км/ч - скорость лодки против течения реки. 3 ч 15 мин = 3 ч + (15 : 60) ч = 3,25 ч. Уравнение:
1) а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x) 2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x) 3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0 1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2 ответ: F(x)=x^3+2x^2+2 4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36 В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
Пусть х км/ч - скорость течения реки, тогда (10 + х) км/ч - скорость лодки по течению реки, (10 - х) км/ч - скорость лодки против течения реки. 3 ч 15 мин = 3 ч + (15 : 60) ч = 3,25 ч. Уравнение:
18/(10+х) + 14/(10-х) = 3,25
18 · (10 - х) + 14 · (10 + х) = 3,25 · (10 + х) · (10 - х)
180 - 18х + 140 + 14х = 3,25 · (10² - х²)
320 - 4х = 325 - 3,25х²
320 - 4х - 325 + 3,25х² = 0
3,25х² - 4х - 5 = 0
D = b² - 4ac = (-4)² - 4 · 3,25 · (-5) = 16 + 65 = 81
√D = √81 = 9
х₁ = (4-9)/(2·3,25) = (-5)/6,5 = -10/13 (не подходит, так как < 0)
х₂ = (4+9)/(2·3,25) = 13/6,5 = 2
ответ: 2 км/ч - скорость течения реки.