Число при делении на 5 дает в остатке 3 только если оно заканчивается на 3 или на 8. Докажем что ни одно целое число в квадрате не заканчивается ни на 3, ни на 8.
если число закачивается на 0, то в квадрате оно заканчивается на 0 если число закачивается на 1, то в квадрате оно заканчивается на 1 если число закачивается на 2, то в квадрате оно заканчивается на 4 если число закачивается на 3, то в квадрате оно заканчивается на 9 если число закачивается на 4, то в квадрате оно заканчивается на 6 если число закачивается на 5, то в квадрате оно заканчивается на 5 если число закачивается на 6, то в квадрате оно заканчивается на 6 если число закачивается на 7, то в квадрате оно заканчивается на 9 если число закачивается на 8, то в квадрате оно заканчивается на 4 если число закачивается на 9, то в квадрате оно заканчивается на 1
(a + b)² = a² + 2ab + b² — формула квадрата суммы; (a — b)² = a² — 2ab + b² — соответственно, формула квадрата разности.
9x² + 24xy + 16y² Солдаты-квадраты (9x² и 16y²), как называет их мой учитель, стоят на своих местах, а в середине многочлена — их удвоенное произведение (2 × 3x × 4y); значит, смело можно утверждать, что перед нами квадрат суммы 3x и 4y, записывающийся так: (3x + 4y)², или, раскладывая на множители, (3x + 4y)(3x + 4y).
Проверка: (3x + 4y)(3x + 4y) = 9x² + 12xy + 12xy + 16y² = 9x² + 24xy + 16y². Мы получили то же выражение. Значит, мы всё решили правильно.
169 — (m + 11) = 169 — m — 11... И всё же я полагаю, что в данном выражении (m + 11) берут в квадрат, а не как ты написал. 169 — (m + 11)² = 13² — (m + 11)² = (13 — m — 11)(13 + m + 11) = (2 — m)(24 + m)
четверта відповідь