М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ks441934
ks441934
17.09.2022 23:41 •  Алгебра

1)sin^2x-sin^2x=0 2)6sin^2x+4sinxcosx=1

👇
Ответ:
ViktorGusarov
ViktorGusarov
17.09.2022

1)sin^2x-sin^2x=0 очевидно выполняется для всех действительных х в том виде, котором дано

2) 6sin^2 x+4sinx *cosx=1, переновсим все влево

6sin^2 x+4sin x *cos x-1=0, по основному тригонометрическому тождеству расписываем 1

6sin^2 x+ 4 sin x *cos x- cos^2 x-sin^2 x=0, группируем

5sin^2 x+4sinx *cos x -cos^2 x=0

4sin^2 x+4sinx*cos x+sin^2 x-cos ^2 x=0, выносим общием множители, по формуле разницы квадаратов выражений

2sin x(sin x+cos x)+(sin x-cos x)(sin x+cos x)=0

(2sin x+sin x-cos x)(sin x+cos x)=0

(3sin x-cos x)(sin x+cos x)=0

произведение равно 0, если хотя бы один из множителей равен 0, поэтому

3sin x-cos x=0 или sin x+cos x=0

если cos x=0то sinx=1 или sin x=-1, поэтому поделив уравнения на 

cos x, потери корней не будет

3tg x=1 или tg x=-1

x=arctg 1/3+pi*n, где n -целое

или x=-pi/4+pi*k, где k -целое

ответ:arctg 1/3+pi*n, где n -целое

или -pi/4+pi*k, где k -целое

4,7(88 оценок)
Открыть все ответы
Ответ:
diana03veremi
diana03veremi
17.09.2022

(2+√5) = 1/8 + 3√5/8 + 15/8 + 5√5/8 = (1/2 + √5/2)³ = (1 + √5)³/8

(2 - √5) = 1/8 - 3√5/8 +15/8 - 5√5/5 = (1/2 - √5/2)³ = (1 - √5)³/ 8

∛(2 + √5) + ∛(2 - √5) = ∛(1 + √5)³/2³ + ∛(1 - √5)³/2³ = (1 + √5)/2 + (1 - √5)/2 = 1/2 - √5/2 + 1/2 + √5/2 = 1

ответ   ОДИН

сделаем по другому

a = 2 + √5

b = 2 - √5

∛(2 + √5) + ∛(2 -√5) = c

∛(a*b) = ∛((2 + √5)(2 - √5)) = ∛(-1) = -1 (формула 1)

a + b = 2 + √5 + 2 - √5 = 4 (формула 2)

∛a + ∛b = c  

∛a = c - ∛b (возводим в куб) (формула 3)

a = c³ - 3c²∛b + 3c∛b² - b

c³ = a + 3c²∛b - 3c∛b² + b = a + b + 3c∛b(c - ∛b) ={ по формуле 2 и 3} = 4 + 3c∛b*∛a = {формула 1} =4 - 3c

c³ + 3c - 4 = 0

c³ + c² + 4c - c² - c - 4 = 0

c²(c - 1) + c(c -1) + 4(c-1) = 0

(c - 1)(c² + c + 4) = 0

вспоминаем что ∛(2 + √5) + ∛(2 -√5) = c

первая скобка c = 1

вторая скобка c² + c + 4 = 0 D=1 - 4*4 = -15 дискриминант отрицательный, действительных решений нет (2 комплексных)

ответ 1

4,5(13 оценок)
Ответ:

(2+√5) = 1/8 + 3√5/8 + 15/8 + 5√5/8 = (1/2 + √5/2)³ = (1 + √5)³/8

(2 - √5) = 1/8 - 3√5/8 +15/8 - 5√5/5 = (1/2 - √5/2)³ = (1 - √5)³/ 8

∛(2 + √5) + ∛(2 - √5) = ∛(1 + √5)³/2³ + ∛(1 - √5)³/2³ = (1 + √5)/2 + (1 - √5)/2 = 1/2 - √5/2 + 1/2 + √5/2 = 1

ответ   ОДИН

сделаем по другому

a = 2 + √5

b = 2 - √5

∛(2 + √5) + ∛(2 -√5) = c

∛(a*b) = ∛((2 + √5)(2 - √5)) = ∛(-1) = -1 (формула 1)

a + b = 2 + √5 + 2 - √5 = 4 (формула 2)

∛a + ∛b = c  

∛a = c - ∛b (возводим в куб) (формула 3)

a = c³ - 3c²∛b + 3c∛b² - b

c³ = a + 3c²∛b - 3c∛b² + b = a + b + 3c∛b(c - ∛b) ={ по формуле 2 и 3} = 4 + 3c∛b*∛a = {формула 1} =4 - 3c

c³ + 3c - 4 = 0

c³ + c² + 4c - c² - c - 4 = 0

c²(c - 1) + c(c -1) + 4(c-1) = 0

(c - 1)(c² + c + 4) = 0

вспоминаем что ∛(2 + √5) + ∛(2 -√5) = c

первая скобка c = 1

вторая скобка c² + c + 4 = 0 D=1 - 4*4 = -15 дискриминант отрицательный, действительных решений нет (2 комплексных)

ответ 1

4,6(55 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ