В решении.
Объяснение:
Построй график функции у=3х²+2х-5.
График - парабола со смещённым центром, ветви направлены вверх, придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 16 3 -4 -5 0 11 28
По графику найдите:
1)область значений функции;
Область значений функции - это проекция графика на ось Оу, ограниченная ординатой вершины параболы, обозначается Е(у). Ордината вершины = -5,3.
Е(у) = у∈(-5,3; +∞).
2) промежутки монотонности функции.
Функция возрастает при х∈(-0,3; + ∞);
Функция убывает при х∈(-∞; -0,3).
3) Промежутки знакопостоянства функции:
у > 0 (график выше оси Ох) при х∈(-∞4 -1,7)∪(1; +∞);
у < 0 (график ниже оси Ох) при х∈(-1,7; 1).
ответ: 24 см и 12 см.
Объяснение:
Пусть l - длина отрезка, соединяющего середины диагоналей трапеции. Этот отрезок лежит на средней линии трапеции и равен полуразности её оснований. Пусть a и b - основания трапеции, причём a>b, а c - длина средней линии трапеции. Так как по условию диагонали трапеции делят её среднюю линию на 3 равных части, то l=c/3. Отсюда c=3*l=3*6=18 см и, так как c=(a+b)/2, то мы получаем систему уравнений:
(a-b)/2=6
(a+b)/2=18
или:
a-b=12
a+b=36
Решая её, находим a=24 см и b=12 см.
24,8х²-22,32х+37,2х-33,48=0
24,8х²+14,88х-33,48=0 I:4
6,2х²+3,72х-8,37=0
D=3,72²-4·6,2·(-8,37)=13,8384+207,576=221,4144
х₁=(-b-√D)/2a=(-3,72-14,88)/2·6,2=-18,6/12,4=-1,5
х₂=(-b+√D)/2a=(-3,72+14,88)/12,4=11,16/12,4=0,9