ответ: (√х-6)²-1=0 равносильно уравнению 2x-6√x=6√x+x-35.
Объяснение:
Два уравнения будут равносильными, если они имеют одно и то же множество корней (в случае кратных корней кратности соответствующих корней должны совпадать.)
Решим данное уравнение.
2x-6√x=6√x+x-35; x-12√x+35=0, по Виета √х=5⇒х=25; √х=7⇒х=49, т.е. данное уравнение имеет два корня 25 и 49.
Проверим сначала, являются ли эти корни корнями оставшихся уравнений. 1) (√25+5)²-1=0, т.к. 99≠0, то второй корень можно и не проверять.
2) √(25+6)²-1=0; т.к. 120≠0, второй корень тоже не проверяем.
3) т.к. при переносе вправо единицы получим (√х+6)²=-1, чего быть не может, то это уравнение вообще не имеет корней.
Т.е. первые три уравнения не равносильны данному. Проверим четвертое.
4) (√25-6)²-1=0; 0=0; ( √49-6)²-1=0; 0=0- верное равенство. Значит, корни четвертого уравнения являются корнями первого. Других корней у последнего уравнения нет , т.к. (√x-6)²-1=0 можно упростить , получим
х-12√x+36-1=0;х-12√x+35=0- а это и есть первое уравнение.
Вывод четвертое уравнение равносильно уравнению, данному в условии задачи.
Раз быстрый гонщик обогнал впервые медленного через 60 минут, то с таким же успехом, мы можем переформулировать это утверждение и так: быстрый гонщик через 60 минут опережал медленного на 6 км (длину одного круга). А значит, их относительная скорость удаления составляет:
Из найденного следует, что скорость быстрого гонщика мы можем записать, как:
Сказано, что медленный гонщик ехал на 15 минут дольше, а значит, если мы вычтем из времени в пути медленного гонщика время в пути быстрого гонщика, то эта разность и должна составить 15 минут. Ясно, что время в пути для каждого гонщика мы можем найти, разделив полный путь трассы на скорость каждого из них, тогда:
Поскольку
направленная в заданную сторону (вперёд), то:
Это и есть скорость второго (медленного) гонщика.
Осталось только перевести её в км/ч:
1.6 км/мин = 1.6 км : мин = 1.6 км : час/60 = 1.6 км * 60/час =
= 16 км * 6/час = 96 км/час.
О т в е т : 96 км.