решить
1. Якщо периметр основи правильної чотирикутної піраміди дорівнює 4 см, а апофема — 1 см, то площа бічної поверхні піраміди дорівнює:
2. Якщо сторона основи правильної трикутної піраміди дорівнює 3 см, а апофема — 1 см, то двогранний кут при основі піраміди дорівнює:
3. Знайдіть площу бічної поверхні правильної трикутної піраміди, у якої плоский кут при вершині дорівнює 30°, а бічне ребро — 10 см.
4. Основа піраміди — трикутник зі сторонами 5 см, 5 см і 6 см, а всі двогранні кути при сторонах основи дорівнюють по 60°. Знайдіть довжину висоти піраміди.
5. Основою піраміди є правильний трикутник зі стороною а. Одна бічна грань піраміди перпендикулярна до основи, а дві інші — нахилені до неї під кутом бета. Знайдіть бічну поверхню піраміди.
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.