1. Рассмотрим параллелограмм ABCD. Диагональ AC разделяет его на два треугольника: ABC и ADC. Эти треугольники равны по стороне и двум прилежащим углам (AC-общая сторона, угол 1=углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечении секущей AC и CD, AD и BC соответственно). Поэтому AB=CD, AD= BC и угол B=углу D. Далее, пользуясь равенствами углов 1 и 2, 3 и 4, получаем угол A=углу 1+угол 3=угол 2+угол 4=углу C. 2. Пусть О-точка пересечения диагоналей AC и BD параллелограмма ABCD. Треугольники AOB и COD равны по стороне и двум прилежащим углам (AB=CD как противоположные стороны параллелограмма, угол 1= углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечение параллельных прямых AB и CD секущими AC и BD соответсвенно). Поэтому AO=OC и OB=OD, что и требовалось доказать
Допустим, это треугольник АВС, высота - АН, биссектриса-АЕ, угол 10 градусов-это угол НАЕ.Так как НАЕ равен 10 градусам, а из условия следует, что АНЕ равен 90 градусов = мы можем для начала найти угол АЕН. Так как сумма углов треугольника должна быть равна 180 град., находим : 180 - (90+10)=80 - это угол АЕН.Так как сторона ВС-это как бы развернутый угол - значит он равен 180 градусов, поэтому мы можем найти угол АЕС : 180-80=100 - это угол АЕС.Так как биссектриса делит угол пополам - значит углы ВАН и ЕАС должны быть равны по 45 градусов(потому что их сумма=90 градусов), но не забываем о 10 градусах , поэтому выходит, что угол ВАН = 30, а ЕАС=45 градусов.Ну а теперь можем найти угол АВС. АВС=180-(90+35)=55 градТеперь еще один острый угол АСВ. АСВ=180-(55+90)=35 градусовответ: АЕС =100: ВАН=30: АСВ=35: ЕАС=45.