Объяснение:
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,
где c — гипотенуза треугольника.
Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.
Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.
Объяснение:Трапеция АВСД, ВС=х, АД=2х, СД=АД/2=2х/2=х, уголД=60, АВ=6, проводим высоты ВН и СК на АД, треугольник КСД прямоугольный, КД=1/2СД=х/2, СК=СД*sin60=х*корень3/2=ВН, НВСК прямоугольник ВН=СК, ВС=НК=х, АН=АД-НК-КД=2х-х-х/2=х/2, треугольник АВН прямоугольный, АВ в квадрате=АН в квадрате+ВН в квадрате, 36=(х в квадрате/4)+(3*х в квадрате/4), 36=4*х в квадрате/4, х=6=СД, АВСД-равнобокая трапеция, АД=2*6=12, ВС=6, ВН=6*корень3/2=3*корень 3, площадь АВСД=1/2(ВС+АД)*ВН=1/2*(6+12)*3*корень 3=27*корень 3