1)в прямоугольном треугольнике катет равен половине гипотенузы. доказать что лежащий против этого катета равен 30 градусов 2)острый угол=30 градусов.доказать что катет лежащий против угла 30 градусов равен половине гипотенузы
Пусть в прямоугольном треугольнике АСВ угол Вравен 30° Тогда другой его острый угол будет равен 60°.
Докажем, что катет АС равен половине гипотенузы АВ.
Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ .
Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник - равносторонний. Катет АС равен половине AM, а так как AM равняется АВ, то катет АС будет равен половине гипотенузы АВ.
Точка М М = (А+С)/2 = ((-5; -7; 3) + (3; 5; -5))/2 = (-2; -2; -2)/2 = (-1; -1; -1) Вектор ВМ ВМ = М - В = (-1; -1; -1) - (4; 2; -2) = (-5; -3; 1) Вектор АС АС = С - А = (3; 5; -5) - (-5; -7; 3) = (8; 12; -8) Скалярное произведение АС и ВМ АС·ВМ = 8*(-5) + 12*(-3) - 8*1 = - 40 - 36 - 8 = - 84 Модули векторов |АС| = √(8² + 12² + 8²) = √272 = 4√17 |BM| = √(5² + 3² + 1²) = √35 Косинус угла между векторами cos(β) = АС·ВМ/(|АС|*|BM|) = -84/(4√17*√35) = -3√(7/85)
Внутренний угол ∠АМВ треугольника АВМ тупой, и равен arccos(-3√(7/85)) ≈ 149.4° В качестве угла между прямыми принято указывать острый угол 180 - arccos(-3√(7/85)) ≈ 30.6°
2)
Пусть в прямоугольном треугольнике АСВ угол Вравен 30° Тогда другой его острый угол будет равен 60°.
Докажем, что катет АС равен половине гипотенузы АВ.
Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ .
Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник - равносторонний. Катет АС равен половине AM, а так как AM равняется АВ, то катет АС будет равен половине гипотенузы АВ.
Знаю,только одно