ответ: 36см²
Объяснение: если треугольник равнобедренный, то высота, проведённая к гипотенузе также является и медианой и биссектрисой, поэтому она разделяет гипотенузу пополам и угол из которого проведена делит тоже пополам, поэтому два угла будут по 45°. Также высота делит этот треугольник на 2 других равнобедренных треугольника, поэтому высота и отрезки, на которые она делит гипотенузу равны. Из этого следует, что высота и разделённые отрезки = 6. Поэтому гипотенуза = 6×2=12см. Теперь найдём площадь треугольника:
S=6×12÷2=36см².
Можно найти проще, не находя гипотенузу. Так как по формуле площадь треугольника равна полупроизведению его основания на высоту, а так как мы половину основания нашли сразу, можно умножить 6×6=36см²
ответ: 36см²
Объяснение: если треугольник равнобедренный, то высота, проведённая к гипотенузе также является и медианой и биссектрисой, поэтому она разделяет гипотенузу пополам и угол из которого проведена делит тоже пополам, поэтому два угла будут по 45°. Также высота делит этот треугольник на 2 других равнобедренных треугольника, поэтому высота и отрезки, на которые она делит гипотенузу равны. Из этого следует, что высота и разделённые отрезки = 6. Поэтому гипотенуза = 6×2=12см. Теперь найдём площадь треугольника:
S=6×12÷2=36см².
Можно найти проще, не находя гипотенузу. Так как по формуле площадь треугольника равна полупроизведению его основания на высоту, а так как мы половину основания нашли сразу, можно умножить 6×6=36см²
Дано:
прям. ABCD
AB=33 см
AC - диагональ
угол ACB/углу ACD = 1/2
Найти:
AC-?
Диагональ делит прям. на два равных прямоугольных треугольника.
Пусть угол ACB =x, тогда угол ACD=2x.
Угол CAD = углу ACB = x (накерст лежащие при AD||BC и сек. AC)
Расс. тр. ACD
x+2x+90⁰=180⁰
3x=90⁰
x=30⁰
Значит угол CAD=30⁰, угол ACD=2*30⁰=60⁰
Из сво-ва прям. тр-ка, катет лежащий против угла в 30⁰ равен половине гипотенузы ⇒AC=2*CD = 2*33=66 см
ответ: диагональ прям-ка равна 66 см