∠3 и ∠5 - соответственные углы при прямых a, b и секущей с ∠3+∠5 = 37°+143° = 180° ⇒ a║b - по признаку параллельных прямых.
в) ∠1 = ∠3 = 45° - (вертикальные углы).
Так как ∠7 = 3∠3 ⇒ ∠7 = 3×45° = 135°
∠5 = ∠7 = 135° - (вертикальные углы)
∠3 и ∠5 - соответственные углы при прямых a, b и секущей с ∠3+∠5 = 37°+143° = 180° ⇒ a║b - по признаку параллельных прямых.
ответ: Что и требовалось доказать
P.S. - рисунок показан внизу там где 1 рисунок
№192
Дано:
∠BАC = 40°
∠BCE = 80°
CK - биссектриса ∠BCE
--------------------------------------
Доказать:
BK║AB
Доказательство:
Так как CK - биссектриса, то ∠ECK = ∠KCB = 40° ⇒ ∠BАC = ∠ECK = 40°, ∠BAC и ∠ ECK - соответственные углы при прямых AB, CK и секущей с AC ⇒ AB║CK по признаку параллельности прямых.
1)Диагонали под прямым углом пересекаются только в ромбе или в квадратеи так как ромб является частным случаем параллелограмма ,то он не может являться нашей искомой фигурой. А квадрат является разновидностью трапеции, у которой диагонали пересекаются под прямым углом, значит наша фигура- квадрат со стороной 8 см , отсюда площадь квадрата равна 8*8=64 см^ 2)Начертите прямоугольную трапецию. Из т.С опустите высоту на основание АД. Площадь этой трапеции состоит из площадей составляющих ее фигур: прямоугольника и прямоугольного треугольника. Площадь прямоугольника равна произведению длины на ширину. А площадь треугольника - половине произведения длин катетов. Один из катетов является высотой трапеции, а второй равен разности длин оснований трапеции. Надеюсь, дальше посчитать не проблема? :) пойдёт?:)
Подробное решение. Сделаем рисунок. Очевидно, что треугольники АВС и А1В1С1 подобны. Докажем это. Прямые, которые пересекают плоскости α и β, образуют пересекающиеся прямые.
Через две пересекающиеся прямые можно провести плоскость. притом только одну.
Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.
Следовательно, АВ||А₁В₁, ВС||В₁С₁, АС||А₁С₁ В каждой паре треугольников СОВ и С₁ОВ₁, АОВ и А₁ОВ₁, АОС и А₁ОС₁ соответственно углы равны. Один - как вертикальный, два - как накрестлежащие при пересечении параллельных прямых секущей. Если углы одного треугольника равны углам другого треугольника, зто такие треугольники подобны. Отсюда следует подобие треугольников АВС и ,А₁В₁С₁, т.к. их стороны соответственно пропорциональны. Итак, треугольники подобны. В подобных треугольниках площади относятся как квадрат коэффициента подобия их линейных размеров. Площадь треугольника АВС по формуле Герона равна 84 см² ( давать вычисления не буду, их можно сделать самостоятельно. Замечу, что такое отношение сторон треугольника встречается часто, и эту площадь многие знают наизусть.) Найдем отношение площадей этих подобных треугольников. S(ABC): S (A1B1C1)=336:84=4 k²=4 k=2 Следовательно, стороны треугольника А₁В₁С₁ в два раза больше сторон треугольника АВС и равны А₁В₁=26 см В₁С₁=28 см А₁С₁=30 см Для проверки можно вычислить по ф. Герона площадь треугольника А₁В₁С₁ получим 336 см² ————— [email protected]
№186
Дано:
a и b ∩ c
а) ∠1 = 37°, ∠7 = 143°
в) ∠1 = 45°, ∠7 = 3∠3
----------------------------------
Доказать:
a║b
Доказательство:
а) ∠1 = ∠3 - (вертикальные углы) ⇒ ∠3 = 37°
∠7 = ∠5 = 143° - (вертикальные углы)
∠3 и ∠5 - соответственные углы при прямых a, b и секущей с ∠3+∠5 = 37°+143° = 180° ⇒ a║b - по признаку параллельных прямых.
в) ∠1 = ∠3 = 45° - (вертикальные углы).
Так как ∠7 = 3∠3 ⇒ ∠7 = 3×45° = 135°
∠5 = ∠7 = 135° - (вертикальные углы)
∠3 и ∠5 - соответственные углы при прямых a, b и секущей с ∠3+∠5 = 37°+143° = 180° ⇒ a║b - по признаку параллельных прямых.
ответ: Что и требовалось доказать
P.S. - рисунок показан внизу там где 1 рисунок
№192
Дано:
∠BАC = 40°
∠BCE = 80°
CK - биссектриса ∠BCE
--------------------------------------
Доказать:
BK║AB
Доказательство:
Так как CK - биссектриса, то ∠ECK = ∠KCB = 40° ⇒ ∠BАC = ∠ECK = 40°, ∠BAC и ∠ ECK - соответственные углы при прямых AB, CK и секущей с AC ⇒ AB║CK по признаку параллельности прямых.
ответ: Что и требовалось доказать
P.S. - рисунок показан внизу там где 2 рисунок