Объяснение:
Номер 1.
V(кон)=1/3*S(осн)*h, S(осн)=П*r ²
S(осн)=П*3²=9П ; V(кон)=1/3*9П*6=18П
S(пол.конуса)= S(осн)+ S(бок)= П*r ²+ П*r*l
ΔАМО- прямоугольный , ∠МАО=45, значит ∠ОМА=45 ⇒ ΔАМО-равнобедренный ⇒ОМ=ОА=6 .Тогда МА=6√2
S(бок)= П*r*l , S(бок)=П*6*6√2=36П√2
S(пол.конуса)= 9П+36П√2=9П(1+4√2)
Номер 3.
V(цил)=S(осн)*h, S(осн)=П*r ² , S(бок цил)=2П*r *h
Пусть радиус основания r , тогда высота цилиндра (r+12)
288П=2П* r*(r+12)+2П*r ² ,
r ²+6r-72=0 , D=324, r=6 см, второе значение r<0 и не подходит по смыслу задачи.
h= 6+12=18(см)
S(осн)=П*6 ² =36П(см²)
V(цил)= 36П*18=648 (см³ )
Объяснение:
Номер 1.
V(кон)=1/3*S(осн)*h, S(осн)=П*r ²
S(осн)=П*3²=9П ; V(кон)=1/3*9П*6=18П
S(пол.конуса)= S(осн)+ S(бок)= П*r ²+ П*r*l
ΔАМО- прямоугольный , ∠МАО=45, значит ∠ОМА=45 ⇒ ΔАМО-равнобедренный ⇒ОМ=ОА=6 .Тогда МА=6√2
S(бок)= П*r*l , S(бок)=П*6*6√2=36П√2
S(пол.конуса)= 9П+36П√2=9П(1+4√2)
Номер 3.
V(цил)=S(осн)*h, S(осн)=П*r ² , S(бок цил)=2П*r *h
Пусть радиус основания r , тогда высота цилиндра (r+12)
288П=2П* r*(r+12)+2П*r ² ,
r ²+6r-72=0 , D=324, r=6 см, второе значение r<0 и не подходит по смыслу задачи.
h= 6+12=18(см)
S(осн)=П*6 ² =36П(см²)
V(цил)= 36П*18=648 (см³ )
здесь можно использовать тот факт, что смежный к углу в 120 градусов угол = 60 градусов
продолжим сторону АВ и опустим из А1 _|_ на АВ (обозначим точку М)
также построим перпендикуляры из А1 к стороне АС (АС2) и биссектрисе ВВ1 (АВ2):
А1М _|_ АВ, А1С2 _|_ АС, А1В2 _|_ ВВ1
точка, лежащая на биссектрисе угла, равноудалена от сторон этого угла (верно и обратное утверждение: равноудаленная от сторон угла точка лежит на биссектрисе этого угла).
А1 по построению лежит на биссектрисе угла САВ => А1М=А1С2
т.к. смежный к углу АВС угол СВМ = 60 градусов = СВВ1=В1ВА, то А1В ---биссектриса угла МВВ1 => А1М = А1В2 = А1С2
а теперь из равенства А1В2 = А1С2 делаем вывод, что А1В1 будет биссектрисой угла СВ1В
т.е. углы СВ1А1 = А1В1В равны.
аналогичные построения и рассуждения докажут, что В1С1 ---биссектриса угла ВВ1А (здесь продолжить сторону СВ, угол смежный с СВА ---АВК=60 градусов... и опускать перпендикуляры из С1 на АС, СВ, ВВ1)
итак, получили равенство углов: СВ1А1 = А1В1В и ВВ1С1 = С1В1А
развернутый угол СВ1А = 180 = СВ1А1+А1В1В+ВВ1С1+С1В1А = 2*А1В1В + 2*ВВ1С1 =
2*(А1В1В + ВВ1С1) = 2*А1В1С1 =>
А1В1С1 = 180/2 = 90 градусов