Также, радиус — проведённый с точки касания — перпендикулярен касательной, тоесть — радиус образует с касательным 2 прямых угла, один из которых: <OBC.
Обозначим четырёхугольник АВСД, центр окружности О. У вписанного четырёхугольника сумма противоположных углов равна 180 градусов. Значит, противоположные углы - это А; С (120°; 60°) и В; Д ( 150°; 30°). Проведём радиусы в вершины. Так как по условию ВС = АВ, то ОВ делит угол в 150° на 2 по 75°. Треугольники ОСВ и ОВА равнобедренные, угол ВАО тоже 75°. Тогда угол ОАД равен 120°-75 = 45°. Угол АОД равен 180°-45°-30° = 105°. Дуга АВС, на которую опирается вписанный угол Д, равна 30*2 = 60°. Так как она делится пополам, то получаем ответ: Дуги равны: АВ = ВС = 30°, АД = 105°, ДОС = 360°-2*30°-105° = 195°.
Признаки равенства прямоугольных треугольников : 1. Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. 2. Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. 4. Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
BC — касательная окружности с центром O.
Также, радиус — проведённый с точки касания — перпендикулярен касательной, тоесть — радиус образует с касательным 2 прямых угла, один из которых: <OBC.
<OBC = 90° ⇒ ΔOCB — прямоугольный треугольник.
<BOC = 45° ⇒ <BCO = 90-45 = 45° ⇒ треугольник — равнбёдренный.
OB == BC == r ⇒ OB == BC == r = 9.
Вывод: r = 9.